DOI QR코드

DOI QR Code

Inhibitory Effects of Boesenbergia pandurata on Age-Related Periodontal Inflammation and Alveolar Bone Loss in Fischer 344 Rats

  • Kim, Haebom (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Changhee (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Do Un (NewTree Co. Ltd.) ;
  • Chung, Hee Chul (NewTree Co. Ltd.) ;
  • Hwang, Jae-Kwan (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2017.11.17
  • Accepted : 2017.11.30
  • Published : 2018.03.28

Abstract

Periodontitis, an infective disease caused by oral pathogens and the intrinsic aging process, results in the destruction of periodontal tissues and the loss of alveolar bone. This study investigated whether Boesenbergia pandurata extract (BPE) standardized with panduratin A exerted anti-periodontitis effects, using an aging model representative of naturally occurring periodontitis. In aged rats, the oral administration of BPE ($200mg{\cdot}kg^{-1}{\cdot}day^{-1}$) for 8 weeks significantly reduced the mRNA and protein expression of $interleukin-1{\beta}$, nuclear factor-kappa B, matrix metalloproteinase (MMP)-2, and MMP-8 in gingival tissues (p < 0.01). In alveolar bone, histological analysis with staining and micro-computed tomography revealed the attenuation of alveolar bone resorption in the BPE-treated aged group, which led to a significant reduction in the mRNA and protein expression of nuclear factor of activated T-cells c1 (NFATc1), c-Fos, tartrate-resistant acid phosphatase, and cathepsin K (p < 0.01). BPE not only increased the expression of osteoblast differentiation markers, such as alkaline phosphate, and collagen type I (COL1A1), but also increased the ratio of osteoprotegerin to RANKL. Collectively, the results strongly suggested that BPE is a natural resource for the prevention or treatment of periodontal diseases.

Keywords

References

  1. Nibali L, Farias BC, Vajgel A, Tu YK, Donos N. 2013. Tooth loss in aggressive periodontitis: a systematic review. J. Dent. Res. 92: 868-875.
  2. Watanabe Y, Hirano H, Matsushita K. 2015. How masticatory function and periodontal disease relate to senile dementia. Jpn. Dent. Sci. Rev. 51: 34-40. https://doi.org/10.1016/j.jdsr.2014.09.002
  3. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. 2015. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86: 611-622.
  4. Hajishengallis G. 2014. Aging and its impact on innate immunity and inflammation: implications for periodontitis. J. Oral Biosci. 56: 30-37. https://doi.org/10.1016/j.job.2013.09.001
  5. Arigbede AO, Babatope BO, Bamidele MK. 2012. Periodontitis and systemic diseases: a literature review. J. Indian Soc. Periodontol. 16: 487-491. https://doi.org/10.4103/0972-124X.106878
  6. Huttner EA, Machado DC, De Oliveira RB, Antunes AGF, Hebling E. 2009. Effects of human aging on periodontal tissues. Spec. Care Dentist. 29: 149-155.
  7. Cavalla F, Hernandez-Ríos P, Sorsa T, Biguetti C, Hernandez M. 2017. Matrix metalloproteinases as regulators of periodontal inflammation. Int. J. Mol. Sci. 18: 440. https://doi.org/10.3390/ijms18020440
  8. Ko S-Y. 2012. Myricetin suppresses LPS-induced MMP expression in human gingival fibroblasts and inhibits osteoclastogenesis by downregulating NFATc1 in RANKL-induced RAW 264.7 cells. Arch. Oral Biol. 57: 1623-1632. https://doi.org/10.1016/j.archoralbio.2012.06.012
  9. Hienz SA, Paliwal S, Ivanovski S. 2015. Mechanisms of bone resorption in periodontitis. J. Immunol. Res. 2015: 615486.
  10. Abuna RPF, Stringhetta-Garcia CT, Fiori LP, Dornelles RCM, Rosa AL, Beloti MM. 2016. Aging impairs osteoblast differentiation of mesenchymal stem cells grown on titanium by favoring adipogenesis. J. Appl. Oral Sci. 24: 376-382. https://doi.org/10.1590/1678-775720160037
  11. Ikeda T, Nagai Y, Yamaguchi A, Yokose S, Yoshiki S. 1995. Age-related reduction in bone matrix protein mRNA expression in rat bone tissues: application of histomorphometry to in situ hybridization. Bone 16: 17-23. https://doi.org/10.1016/8756-3282(95)80006-C
  12. Cao J, Venton L, Sakata T, Halloran BP. 2003. Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J. Bone Miner. Res. 18: 270-277. https://doi.org/10.1359/jbmr.2003.18.2.270
  13. Marini F, Parri S, Masi L, Ciuffi S, Guazzini A, Fabbri S, et al. 2013. COL1A1 Sp1 variation and bone phenotypes in an Italian population. Clin. Cases Miner. Bone Metab. 10: 133-138.
  14. Martin TJ, Sims NA. 2015. RANKL/OPG; critical role in bone physiology. Rev. Endocr. Metab. Disord. 16: 131-139. https://doi.org/10.1007/s11154-014-9308-6
  15. Chahyadi A, Hartati R, Wirasutisna KR. 2014. Boesenbergia pandurata Roxb., an Indonesian medicinal plant: phytochemistry, biological activity, plant biotechnology. Procedia Chem. 13: 13-37. https://doi.org/10.1016/j.proche.2014.12.003
  16. Yanti, Anggakusuma, Gwon S-H, Hwang J-K. 2009. Kaempferia pandurata Roxb. inhibits Porphyromonas gingivalis supernatant-induced matrix metalloproteinase-9 expression via signal transduction in human oral epidermoid cells. J. Ethnopharmacol. 123: 315-324. https://doi.org/10.1016/j.jep.2009.02.047
  17. Yanti, Hwang J-K. 2010. Suppressive effect of ethanolic Kaempferia pandurata Roxb. extract on matrix metalloproteinase-2 expression in Porphyromonas gingivalis-treated human gingival fibroblasts in vitro. J. Oral Sci. 52: 583-591. https://doi.org/10.2334/josnusd.52.583
  18. Yanti, Rukayadi Y, Lee K-H, Hwang J-K. 2009. Activity of panduratin A isolated from Kaempferia pandurata Roxb. a gainst multi-species oral biofilms in vitro. J. Oral Sci. 51: 87-95. https://doi.org/10.2334/josnusd.51.87
  19. Woo SW, Rhim D-B, Kim C, Hwang J-K. 2015. Effect of standardized Boesenbergia pandurata extract and its active compound panduratin A on skin hydration and barrier function in human epidermal keratinocytes. Prev. Nutr. Food Sci. 20: 15-21. https://doi.org/10.3746/pnf.2015.20.1.15
  20. Zhang D, Chen L, Li S, Gu Z, Yan J. 2008. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces $IL-1{\beta}$, $TNF-{\alpha}$ and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun. 14: 99-107. https://doi.org/10.1177/1753425907088244
  21. Nichols TC, Fischer TH, Deliargyris EN, Baldwin Jr AS. 2001. Role of nuclear factor-kappa B ($NF-{\kappa}B$) in inflammation, periodontitis, and atherogenesis. Ann. Periodontol. 6: 20-29. https://doi.org/10.1902/annals.2001.6.1.20
  22. Kim JH, Kim N. 2014. Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab. 21: 233-241. https://doi.org/10.11005/jbm.2014.21.4.233
  23. Takayanagi H. 2007. The role of NFAT in osteoclast formation. Ann. N. Y. Acad. Sci. 1116: 227-237. https://doi.org/10.1196/annals.1402.071
  24. Kwak HB, Lee BK, Oh J, Yeon J-T, Choi S-W, Cho HJ, et al. 2010. Inhibition of osteoclast differentiation and bone resorption by rotenone, through down-regulation of RANKL-induced c-Fos and NFATc1 expression. Bone 46: 724-731. https://doi.org/10.1016/j.bone.2009.10.042
  25. Xu X-C, Chen H, Zhang X, Zhai Z-J, Liu X-Q, Qin A, et al. 2014. Simvastatin prevents alveolar bone loss in an experimental rat model of periodontitis after ovariectomy. J. Transl. Med. 12: 284. https://doi.org/10.1186/s12967-014-0284-0
  26. Tominari T, Matsumoto C, Watanabe K, Hirata M, Grundler FMW, Miyaura C, et al. 2015. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice. FEBS Open Bio 5: 522-527. https://doi.org/10.1016/j.fob.2015.06.003
  27. Mau L-P, Cheng W-C, Chen J-K, Shieh Y-S, Cochran DL, Huang R-Y. 2016. Curcumin ameliorates alveolar bone destruction of experimental periodontitis by modulating osteoclast differentiation, activation and function. J. Funct. Foods 22: 243-256. https://doi.org/10.1016/j.jff.2016.01.025
  28. Kim HK, Park HR, Lee JS, Chung TS, Chung HY, Chung J. 2007. Down-regulation of iNOS and $TNF-{\alpha}$ expression by kaempferol via $NF-{\kappa}B$ inactivation in aged rat gingival tissues. Biogerontology 8: 399-408. https://doi.org/10.1007/s10522-007-9083-9
  29. Yoneda T, Tomofuji T, Ekuni D, Azuma T, Endo Y, Kasuyama K, et al. 2013. Anti-aging effects of co-enzyme Q10 on periodontal tissues. J. Dent. Res. 92: 735-739. https://doi.org/10.1177/0022034513490959
  30. Li Y-Y, Huang S-S, Lee M-M, Deng J-S, Huang G-J. 2015. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of $NF-{\kappa}B$ and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol. 25: 332-339. https://doi.org/10.1016/j.intimp.2015.02.002
  31. Soromou LW, Chu X, Jiang L, Wei M, Huo M, Chen N, et al. 2012. In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int. Immunopharmacol. 14: 66-74. https://doi.org/10.1016/j.intimp.2012.06.009
  32. Chen H, Mo X, Yu J, Huang Z. 2013. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol. 17: 26-32.
  33. Medicherla K, Sahu BD, Kuncha M, Kumar JM, Sudhakar G, Sistla R. 2015. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and $NF-{\kappa}B$ signaling. Food Funct. 6: 2984-2995. https://doi.org/10.1039/C5FO00405E
  34. Kim H, Kim M-B, Kim C, Hwang J-K. 2017. Inhibitory effects of panduratin A on inflammation and osteoclastogenesis induced by periodontitis through inhibition of MAPK pathways in vitro. J. Microbiol. Biotechnol. DOI: 10.4014/jmb.1707.07042 [In Press].

Cited by

  1. Inhibitory Effects of Standardized Boesenbergia pandurata Extract and Its Active Compound Panduratin A on Lipopolysaccharide-Induced Periodontal Inflammation and Alveolar Bone Loss in Rats vol.21, pp.10, 2018, https://doi.org/10.1089/jmf.2017.4155
  2. Allicin Reversed the Process of Frailty in Aging Male Fischer 344 Rats With Osteoporosis vol.75, pp.5, 2018, https://doi.org/10.1093/gerona/glz205
  3. Multi-Omics Analysis of Anti-Inflammatory Action of Alkaline Extract of the Leaves of Sasa sp. vol.10, pp.10, 2021, https://doi.org/10.3390/jcm10102100