References
- Nibali L, Farias BC, Vajgel A, Tu YK, Donos N. 2013. Tooth loss in aggressive periodontitis: a systematic review. J. Dent. Res. 92: 868-875.
- Watanabe Y, Hirano H, Matsushita K. 2015. How masticatory function and periodontal disease relate to senile dementia. Jpn. Dent. Sci. Rev. 51: 34-40. https://doi.org/10.1016/j.jdsr.2014.09.002
- Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. 2015. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86: 611-622.
- Hajishengallis G. 2014. Aging and its impact on innate immunity and inflammation: implications for periodontitis. J. Oral Biosci. 56: 30-37. https://doi.org/10.1016/j.job.2013.09.001
- Arigbede AO, Babatope BO, Bamidele MK. 2012. Periodontitis and systemic diseases: a literature review. J. Indian Soc. Periodontol. 16: 487-491. https://doi.org/10.4103/0972-124X.106878
- Huttner EA, Machado DC, De Oliveira RB, Antunes AGF, Hebling E. 2009. Effects of human aging on periodontal tissues. Spec. Care Dentist. 29: 149-155.
- Cavalla F, Hernandez-Ríos P, Sorsa T, Biguetti C, Hernandez M. 2017. Matrix metalloproteinases as regulators of periodontal inflammation. Int. J. Mol. Sci. 18: 440. https://doi.org/10.3390/ijms18020440
- Ko S-Y. 2012. Myricetin suppresses LPS-induced MMP expression in human gingival fibroblasts and inhibits osteoclastogenesis by downregulating NFATc1 in RANKL-induced RAW 264.7 cells. Arch. Oral Biol. 57: 1623-1632. https://doi.org/10.1016/j.archoralbio.2012.06.012
- Hienz SA, Paliwal S, Ivanovski S. 2015. Mechanisms of bone resorption in periodontitis. J. Immunol. Res. 2015: 615486.
- Abuna RPF, Stringhetta-Garcia CT, Fiori LP, Dornelles RCM, Rosa AL, Beloti MM. 2016. Aging impairs osteoblast differentiation of mesenchymal stem cells grown on titanium by favoring adipogenesis. J. Appl. Oral Sci. 24: 376-382. https://doi.org/10.1590/1678-775720160037
- Ikeda T, Nagai Y, Yamaguchi A, Yokose S, Yoshiki S. 1995. Age-related reduction in bone matrix protein mRNA expression in rat bone tissues: application of histomorphometry to in situ hybridization. Bone 16: 17-23. https://doi.org/10.1016/8756-3282(95)80006-C
- Cao J, Venton L, Sakata T, Halloran BP. 2003. Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J. Bone Miner. Res. 18: 270-277. https://doi.org/10.1359/jbmr.2003.18.2.270
- Marini F, Parri S, Masi L, Ciuffi S, Guazzini A, Fabbri S, et al. 2013. COL1A1 Sp1 variation and bone phenotypes in an Italian population. Clin. Cases Miner. Bone Metab. 10: 133-138.
- Martin TJ, Sims NA. 2015. RANKL/OPG; critical role in bone physiology. Rev. Endocr. Metab. Disord. 16: 131-139. https://doi.org/10.1007/s11154-014-9308-6
- Chahyadi A, Hartati R, Wirasutisna KR. 2014. Boesenbergia pandurata Roxb., an Indonesian medicinal plant: phytochemistry, biological activity, plant biotechnology. Procedia Chem. 13: 13-37. https://doi.org/10.1016/j.proche.2014.12.003
- Yanti, Anggakusuma, Gwon S-H, Hwang J-K. 2009. Kaempferia pandurata Roxb. inhibits Porphyromonas gingivalis supernatant-induced matrix metalloproteinase-9 expression via signal transduction in human oral epidermoid cells. J. Ethnopharmacol. 123: 315-324. https://doi.org/10.1016/j.jep.2009.02.047
- Yanti, Hwang J-K. 2010. Suppressive effect of ethanolic Kaempferia pandurata Roxb. extract on matrix metalloproteinase-2 expression in Porphyromonas gingivalis-treated human gingival fibroblasts in vitro. J. Oral Sci. 52: 583-591. https://doi.org/10.2334/josnusd.52.583
- Yanti, Rukayadi Y, Lee K-H, Hwang J-K. 2009. Activity of panduratin A isolated from Kaempferia pandurata Roxb. a gainst multi-species oral biofilms in vitro. J. Oral Sci. 51: 87-95. https://doi.org/10.2334/josnusd.51.87
- Woo SW, Rhim D-B, Kim C, Hwang J-K. 2015. Effect of standardized Boesenbergia pandurata extract and its active compound panduratin A on skin hydration and barrier function in human epidermal keratinocytes. Prev. Nutr. Food Sci. 20: 15-21. https://doi.org/10.3746/pnf.2015.20.1.15
-
Zhang D, Chen L, Li S, Gu Z, Yan J. 2008. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces
$IL-1{\beta}$ ,$TNF-{\alpha}$ and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun. 14: 99-107. https://doi.org/10.1177/1753425907088244 -
Nichols TC, Fischer TH, Deliargyris EN, Baldwin Jr AS. 2001. Role of nuclear factor-kappa B (
$NF-{\kappa}B$ ) in inflammation, periodontitis, and atherogenesis. Ann. Periodontol. 6: 20-29. https://doi.org/10.1902/annals.2001.6.1.20 - Kim JH, Kim N. 2014. Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab. 21: 233-241. https://doi.org/10.11005/jbm.2014.21.4.233
- Takayanagi H. 2007. The role of NFAT in osteoclast formation. Ann. N. Y. Acad. Sci. 1116: 227-237. https://doi.org/10.1196/annals.1402.071
- Kwak HB, Lee BK, Oh J, Yeon J-T, Choi S-W, Cho HJ, et al. 2010. Inhibition of osteoclast differentiation and bone resorption by rotenone, through down-regulation of RANKL-induced c-Fos and NFATc1 expression. Bone 46: 724-731. https://doi.org/10.1016/j.bone.2009.10.042
- Xu X-C, Chen H, Zhang X, Zhai Z-J, Liu X-Q, Qin A, et al. 2014. Simvastatin prevents alveolar bone loss in an experimental rat model of periodontitis after ovariectomy. J. Transl. Med. 12: 284. https://doi.org/10.1186/s12967-014-0284-0
- Tominari T, Matsumoto C, Watanabe K, Hirata M, Grundler FMW, Miyaura C, et al. 2015. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice. FEBS Open Bio 5: 522-527. https://doi.org/10.1016/j.fob.2015.06.003
- Mau L-P, Cheng W-C, Chen J-K, Shieh Y-S, Cochran DL, Huang R-Y. 2016. Curcumin ameliorates alveolar bone destruction of experimental periodontitis by modulating osteoclast differentiation, activation and function. J. Funct. Foods 22: 243-256. https://doi.org/10.1016/j.jff.2016.01.025
-
Kim HK, Park HR, Lee JS, Chung TS, Chung HY, Chung J. 2007. Down-regulation of iNOS and
$TNF-{\alpha}$ expression by kaempferol via$NF-{\kappa}B$ inactivation in aged rat gingival tissues. Biogerontology 8: 399-408. https://doi.org/10.1007/s10522-007-9083-9 - Yoneda T, Tomofuji T, Ekuni D, Azuma T, Endo Y, Kasuyama K, et al. 2013. Anti-aging effects of co-enzyme Q10 on periodontal tissues. J. Dent. Res. 92: 735-739. https://doi.org/10.1177/0022034513490959
-
Li Y-Y, Huang S-S, Lee M-M, Deng J-S, Huang G-J. 2015. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of
$NF-{\kappa}B$ and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol. 25: 332-339. https://doi.org/10.1016/j.intimp.2015.02.002 - Soromou LW, Chu X, Jiang L, Wei M, Huo M, Chen N, et al. 2012. In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int. Immunopharmacol. 14: 66-74. https://doi.org/10.1016/j.intimp.2012.06.009
- Chen H, Mo X, Yu J, Huang Z. 2013. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol. 17: 26-32.
-
Medicherla K, Sahu BD, Kuncha M, Kumar JM, Sudhakar G, Sistla R. 2015. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and
$NF-{\kappa}B$ signaling. Food Funct. 6: 2984-2995. https://doi.org/10.1039/C5FO00405E - Kim H, Kim M-B, Kim C, Hwang J-K. 2017. Inhibitory effects of panduratin A on inflammation and osteoclastogenesis induced by periodontitis through inhibition of MAPK pathways in vitro. J. Microbiol. Biotechnol. DOI: 10.4014/jmb.1707.07042 [In Press].
Cited by
- Inhibitory Effects of Standardized Boesenbergia pandurata Extract and Its Active Compound Panduratin A on Lipopolysaccharide-Induced Periodontal Inflammation and Alveolar Bone Loss in Rats vol.21, pp.10, 2018, https://doi.org/10.1089/jmf.2017.4155
- Allicin Reversed the Process of Frailty in Aging Male Fischer 344 Rats With Osteoporosis vol.75, pp.5, 2018, https://doi.org/10.1093/gerona/glz205
- Multi-Omics Analysis of Anti-Inflammatory Action of Alkaline Extract of the Leaves of Sasa sp. vol.10, pp.10, 2021, https://doi.org/10.3390/jcm10102100