Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.216

Poncirin Inhibits Osteoclast Differentiation and Bone Loss through Down-Regulation of NFATc1 In Vitro and In Vivo  

Chun, Kwang-Hoon (Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University)
Jin, Hyun Chul (Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University)
Kang, Ki Sung (Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University)
Chang, Tong-Shin (College of Pharmacy, Seoul National University)
Hwang, Gwi Seo (Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University)
Publication Information
Biomolecules & Therapeutics / v.28, no.4, 2020 , pp. 337-343 More about this Journal
Abstract
Activation of osteoclast and inactivation of osteoblast result in loss of bone mass with bone resorption, leading to the pathological progression of osteoporosis. The receptor activator of NF-κB ligand (RANKL) is a member of the TNF superfamily, and is a key mediator of osteoclast differentiation. A flavanone glycoside isolated from the fruit of Poncirus trifoliata, poncirin has anti-allergic, hypocholesterolemic, anti-inflammatory and anti-platelet activities. The present study investigates the effect of poncirin on osteoclast differentiation of RANKL-stimulated RAW264.7 cells. We observed reduced formation of RANKL-stimulated TRAP-positive multinucleated cells (a morphological feature of osteoclasts) after poncirin exposure. Real-time qPCR analysis showed suppression of the RANKL-mediated induction of key osteoclastogenic molecules such as NFATc1, TRAP, c-Fos, MMP9 and cathepsin K after poncirin treatment. Poncirin also inhibited the RANKL-mediated activation of NF-κB and, notably, JNK, without changes in ERK and p38 expression in RAW264.7 cells. Furthermore, we assessed the in vivo efficacy of poncirin in the lipopolysaccharide (LPS)-induced bone erosion model. Evaluating the micro-CT of femurs revealed that bone erosion in poncirin treated mice was markedly attenuated. Our results indicate that poncirin exerts anti-osteoclastic effects in vitro and in vivo by suppressing osteoclast differentiation. We believe that poncirin is a promising candidate for inflammatory bone loss therapeutics.
Keywords
Osteoclast; Osteoporosis; Poncirin; RANKL; JNK;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Islam, S., Hassan, F., Tumurkhuu, G., Dagvadorj, J., Koide, N., Naiki, Y., Mori, I., Yoshida, T. and Yokochi, T. (2007) Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem. Biophys. Res. Commun. 360, 346-351.   DOI
2 Jang, Y., Kim, E. K. and Shim, W. S. (2018) Phytotherapeutic effects of the fruits of Poncirus trifoliata (L.) Raf. on cancer, inflammation, and digestive dysfunction. Phytother. Res. 32, 616-624.   DOI
3 Jang, Y., Kim, T. K. and Shim, W. S. (2013) Naringin exhibits in vivo prokinetic activity via activation of ghrelin receptor in gastrointestinal motility dysfunction rats. Pharmacology 92, 191-197.   DOI
4 Kim, J., Lee, H., Kang, K. S., Chun, K. H. and Hwang, G. S. (2015) Cordyceps militaris mushroom and cordycepin inhibit RANKL-induced osteoclast differentiation. J. Med. Food 18, 446-452.   DOI
5 Kim, J. B., Han, A. R., Park, E. Y., Kim, J. Y., Cho, W., Lee, J., Seo, E. K. and Lee, K. T. (2007) Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30, 2345-2351.   DOI
6 Kim, J. H. and Kim, N. (2014) Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab. 21, 233-241.   DOI
7 Lee, Y. M., Kim, C. Y., Kim, Y. C. and Kim, H. M. (1997) Effects of Poncirus trifoliata on type I hypersensitivity reaction. Am. J. Chin. Med. 25, 51-56.   DOI
8 Lee, Y. M., Kim, D. K., Kim, S. H., Shin, T. Y. and Kim, H. M. (1996) Antianaphylactic activity of Poncirus trifoliata fruit extract. J. Ethnopharmacol. 54, 77-84.   DOI
9 Manolagas, S. C. (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21, 115-137.   DOI
10 Matsuo, K., Owens, J. M., Tonko, M., Elliott, C., Chambers, T. J. and Wagner, E. F. (2000) Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat. Genet. 24, 184-187.   DOI
11 Monje, P., Hernandez-Losa, J., Lyons, R. J., Castellone, M. D. and Gutkind, J. S. (2005) Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 280, 35081-35084.   DOI
12 Roodman, G. D. (1999) Cell biology of the osteoclast. Exp. Hematol. 27, 1229-1241.   DOI
13 Shin, T. Y., Oh, J. M., Choi, B. J., Park, W. H., Kim, C. H., Jun, C. D. and Kim, S. H. (2006) Anti-inflammatory effect of Poncirus trifoliata fruit through inhibition of NF-kappaB activation in mast cells. Toxicol. In Vitro 20, 1071-1076.   DOI
14 Smith, B. J., Lerner, M. R., Bu, S. Y., Lucas, E. A., Hanas, J. S., Lightfoot, S. A., Postier, R. G., Bronze, M. S. and Brackett, D. J. (2006) Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 38, 378-386.   DOI
15 Soysa, N. S. and Alles, N. (2009) NF-kappaB functions in osteoclasts. Biochem. Biophys. Res. Commun. 378, 1-5.   DOI
16 Vaananen, H. K., Zhao, H., Mulari, M. and Halleen, J. M. (2000) The cell biology of osteoclast function. J. Cell Sci. 113, 377-381.   DOI
17 Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342.   DOI
18 Wang, Z. Q., Ovitt, C., Grigoriadis, A. E., Mohle-Steinlein, U., Ruther, U. and Wagner, E. F. (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741-745.   DOI
19 Wittrant, Y., Theoleyre, S., Couillaud, S., Dunstan, C., Heymann, D. and Redini, F. (2003) Regulation of osteoclast protease expression by RANKL. Biochem. Biophys. Res. Commun. 310, 774-778.   DOI
20 Asagiri, M., Sato, K., Usami, T., Ochi, S., Nishina, H., Yoshida, H., Morita, I., Wagner, E. F., Mak, T. W., Serfling, E. and Takayanagi, H. (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261-1269.   DOI
21 Yoon, H. Y., Yun, S. I., Kim, B. Y., Jin, Q., Woo, E. R., Jeong, S. Y. and Chung, Y. S. (2011) Poncirin promotes osteoblast differentiation but inhibits adipocyte differentiation in mesenchymal stem cells. Eur. J. Pharmacol. 664, 54-59.   DOI
22 Wu, C. C., Hsu, S. C., Shih, H. M. and Lai, M. Z. (2003) Nuclear factor of activated T cells c is a target of p38 mitogen-activated protein kinase in T cells. Mol. Cell. Biol. 23, 6442-6454.   DOI
23 Wu, H., Qi, H., Iwasaki, D., Zhu, B., Shimoishi, Y., Murata, Y. and Nakamura, Y. (2009) JNK-dependent NFATc1 pathway positively regulates IL-13 gene expression induced by (-)-epigallocatechin- 3-gallate in human basophilic KU812 cells. Free Radic. Biol. Med. 47, 1028-1038.   DOI
24 Yoon, H. Y., Won, Y. Y. and Chung, Y. S. (2012) Poncirin prevents bone loss in glucocorticoid-induced osteoporosis in vivo and in vitro. J. Bone Miner. Metab. 30, 509-516.   DOI
25 Hayward, M. and Fiedler-Nagy, C. (1987) Mechanisms of bone loss: rheumatoid arthritis, periodontal disease and osteoporosis. Agents Actions 22, 251-254.   DOI
26 Choi, S. W., Park, K. I., Yeon, J. T., Ryu, B. J., Kim, K. J. and Kim, S. H. (2014) Anti-osteoclastogenic activity of matairesinol via suppression of p38/ERK-NFATc1 signaling axis. BMC Complement. Altern. Med. 14, 35.   DOI
27 Eferl, R., Hoebertz, A., Schilling, A. F., Rath, M., Karreth, F., Kenner, L., Amling, M. and Wagner, E. F. (2004) The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J. 23, 2789-2799.   DOI
28 Fujisaki, K., Tanabe, N., Suzuki, N., Kawato, T., Takeichi, O., Tsuzukibashi, O., Makimura, M., Ito, K. and Maeno, M. (2007) Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life Sci. 80, 1311-1318.   DOI
29 Fukuda, A., Hikita, A., Wakeyama, H., Akiyama, T., Oda, H., Nakamura, K. and Tanaka, S. (2005) Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1. J. Bone Miner. Res. 20, 2245-2253.   DOI
30 Grigoriadis, A. E., Wang, Z. Q., Cecchini, M. G., Hofstetter, W., Felix, R., Fleisch, H. A. and Wagner, E. F. (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448.   DOI
31 Huang, H., Chang, E. J., Ryu, J., Lee, Z. H., Lee, Y. and Kim, H. H. (2006) Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem. Biophys. Res. Commun. 351, 99-105.   DOI
32 Ikeda, F., Matsubara, T., Tsurukai, T., Hata, K., Nishimura, R. and Yoneda, T. (2008) JNK/c-Jun signaling mediates an anti-apoptotic effect of RANKL in osteoclasts. J. Bone Miner. Res. 23, 907-914.   DOI