• Title/Summary/Keyword: Catenary system

Search Result 410, Processing Time 0.03 seconds

Analysis for Catenary Voltage of The ATs-Fed AC Electric Railroad System (단권변압기 교류전기철도 급전시스템의 전차선 전압해석)

  • 정현수;이승혁;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.493-499
    • /
    • 2003
  • This paper presents exact Autotransformers(ATs)-fed AC electric Railroad system modeling using constant current mode for locomotives. An AC electric railroad system is rapidly changing single-phase load, and at a feeding substation, 3-phase electric power is transferred to paired directional single-phase electric power. As the train moves along a section of line between two adjacent ATs. The proposed AC electric railroad system modeling method considers the line self-impedances and mutual-impedances. The constant current mode model objectives are to calculate the catenary and rail voltages with the loop equation. When there are more than one train in the AC electric railroad system, the principle of superposition applies and the only difference between the system analyses for one train. Filially, this paper shows the general equation of an AC electric railroad system, and that equation has no relation with trains number, trains position, and feeding distance.

Analysis of Overhead Rigid Conductor Line for the Subway tunnel section (지하철 터널 구간 강체가선 방식의 특성분석)

  • Yim Geum-Kwang;Chang Sang-Hoon;Kim Wang-Gon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.493-499
    • /
    • 2003
  • Railroad, a superior mode of public transportation provides safe, efficient, speedy, comfortable and economical service, has fundamentally different characteristics from airplanes, ships and cars. Among the unique characteristics of a railroad is the fact that it operates on fixed track with multiple car trains. The subway system was first selected as the best solution to difficult automobile traffic conditions and environmental problems. Seoul subway no.1line (Jongno line) was opened for service on August 15, 1974. Seoul city has completed and now operates eight subway lines (286.7km) since 1974. At present the subways operate in Busan, Daegu and Incheon city, and are under construction in Gwangju and Daejeon city. The power source for subway trains has been electricity since 1896, and power supply systems are the third rail type and/or the catenary system. The typical catenary system is the rigid bar type. R-bar and T-bar are used in the rigid bar type of catenary system, and the two types of R-bar and T-bar are uesd in Korea also. R-bar is used only for AC 25kV power supply and T-bar for DC 1,500V. From 30 years of subway experience I would like to suggest the most economic catenary system to ensure of safety, reliability and expediency for the railway lines to be constructed and the forthcoming replacement due to the life cycle after studying and analysing the characteristics, advantages and disadvantages of R-bar and T-bar.

  • PDF

Effects of Corrosion Environment on Mechanical Properties of Catenary Wires (가선재의 기계적특성에 미치는 부식환경의 영향)

  • 김용기;장세기;조성일
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2002
  • As most railways are gradually electrified with modernized electric cars, the demand for catenary wires and their facilities are also increased. Catenary Wires are exposed to the marine area with air-borne salt or severely polluted industrial area with much corrosive emission gases depending on the locations. Corrosion of catenaty wires can make their actual lifetime shorter than that originally designed. Thus, the messenger and ACSR wires, kinds of catenary wire system, were investigated with respect to corrosion, which include new and used ones collected at the field. Tensile strengths and elongations appeared to decrease when the wires were exposed to corrosive environments. The amount of decrease was more prominent as environmental conditions became more corrosive. They are also vibrated with some amplitude everytime pentographs touch contact line. The frequent cyclic load on the wire may result in a fatigue damage. Surface damage by corrosion can make fatigue crack initiate with ease. In the present study, the fatigue life of the used wire was measured 50 to 60% compared with that of new one in average.

Simulation and Testing of the Effect of Current Collection Performance According to Pre-sag in 400km/h Overhead Contact Lines (400km/h 전차선로에서 사전이도가 집전성능에 미치는 영향에 대한 시뮬레이션 및 시험)

  • Kwon, Sam Young;Cho, Yong Hyeon;Lee, Kiwon;Oh, Hyuck Keun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.288-296
    • /
    • 2016
  • A 400km/h simple catenary system was constructed as a test line in Korea. In the design stage of this system, the pre-sag was one of the engineering issues most focused on. It is known that the pre-sag improves the current collection performance in a certain band of high speed. However, the effect of pre-sag at 400km/h has not yet been established. To grasp a better pre-sag in the 400km/h catenary, we transacted the dynamic performance prediction simulation between catenary and pantograph under conditions of 0 and 1/3000 pre-sag. The level of 0 pre-sag was adapted for the 400km/h catenary design after reviewing predictions. We constituted the 1/3000 pre-sag sample section (about 1km) while constructing the 400km/h catenary test-bed (28km) of 0 pre-sag. With a HEMU-430X train, the contact forces were measured in the test-bed including the pre-sag sample section. In this paper, the predicted and measured dynamic performance values (contact forces) for 0 and 1/3000 pre-sag are described and compared. It is conclusively confirmed by analytical and experimental examination that the non pre-sag showed better dynamic (current collection) performance than that of the 1/3000 pre-sag for the 400km/h catenary system.

Research on Configuration Optimization of Overlap Section in Overhead Catenary System for High-speed Railway (전차선로 속도향상에 따른 오버랩 구간(Overlap section) 경간 구성 기법)

  • Choi, Tae-su;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.975-980
    • /
    • 2017
  • Overhead catenary system of electric railway has overlap sections which devide and tighten trolley wire supplying electric power to train, where current collection performances may become worse according to railway speed-up. Current collection tests conducted at 400 km/h test-bed section of Honam high-speed railway show that balanced line arrangement at overlap section is needed to secure current collection without arc generation between trolley wire and train current collection device. This paper proposes a design procedure of the overlap section to allow for tension increase and uplift of the trolley wires according to railway speed-up. By applying the proposed procedure to the overhead catenary system of Honam high-speed railway, it is suggested that the minimum span length should be 33.2 m for railway speed-up to 350 km/h and 43.7 m for speed-up to 400 km/h.

A Study on the Dynamic Simulation of High Speed Current Collection System (고속 집전계의 동적 수치모의해석 프로그램 연구)

  • Hur, S.;Kyung, J.H.;Song, D.H.;Kim, J.S.;Cho, Y.H.
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • In this study, we have developed the static and dynamic simulation program of a high speed current collection system. The catenary wire is modeled to discrete masses connected by massless strings and the pantograph is replaced with 3 d.o.f equivalent models that are composed of masses, springs and dampers. We derived partial differential equations of motion from the equivalent model and developed the simulation program. Then, we calculated the static equilibrium state of the overhead catenary and the dynamic behaviors of the high speed current collection system. The analysis results were compared with the results of GASENDO software developed at RTRI in Japan.

A Study on Calculation of Permissible Current Capacity on Catenary System (시간 변수를 고려한 전차선로 허용전류 계산 기법 연구)

  • Kim, Joo-Rak;Kwon, Sam-Young;Lee, Ki-Won;Chang, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.401-403
    • /
    • 2001
  • This paper presents an advanced calculation method of permissible current capacity on catenary system. If the permissible current calculation method used in electric power system is applied to electric railroad system, it is troublesome. Because electric load in catenary system varies periodically according to time. Therefore, this study proposes permissible current calculation method through heat equation according to time variation.

  • PDF

A Reduced Equivalent 5 conductors Modeling of the Catenary System (전차선로 시스템의 5 도체 등가 축약 모델링)

  • 이한민;오광해;이장무;창상훈;장길수;권세혁
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.684-690
    • /
    • 2003
  • This paper estimates line constants of equivalent five-conductors model using the reduced equivalent method. Actually, the catenary system is considered by the equivalent five-conductors model in the electrical aspect. Therefore, we should compose the catenary system of the equivalent five-conductors model, then the line constants of this equivalent five-conductors model are calculated. This paper shows the reducing process about the real system of the field by using the proposed theory. Also the line constants of reduced system are provided in this paper.

A Reduced Equivalent model of the Catenary System (전차선로 시스템의 등가 축약 모델)

  • Lee Hanmin;Oh Kwanghae;Lee ChangMu;Han Moonseob;Chang shanghoon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.415-420
    • /
    • 2003
  • This paper estimates line constants of equivalent five-conductors model by using the reduced equivalent method. Actually, the catenary system is considered by the equivalent five-conductors model in the electrical aspect. Therefore, we should compose the catenary system of the equivalent five-conductors model. And then we calculate line constants of this equivalent five-conductors model. This paper shows the reducing process about the real system of the field by using the proposed theory and also line constants of reduced system

  • PDF

Time-varying Stiffness of Catenary System and its Effect on Current Collection by Pantograph (가선계의 강성변화와 판토그래프의 집전성능)

  • 최연선
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.598-605
    • /
    • 2000
  • The design of a current collection system of high speed train requires the fundamental understandings fer the dynamic characteristics of a catenary system and pantograph. The stiffness of the catenary system of high speed train has the varying characteristics for the change of the contact point with a pantograph, since the supporting pole and hanger make the different boundary conditions for the updown stiffness of a trolley wire. The variation of stiffness results in Mathiue equation, which characterizes the stability of the system. However, the two terms variation of the stiffness due to span length and hanger distance cannot be solved analytically. In this paper, the stiffness variations are calculated, and the physical reasoning of linear model and one term Mathieu equation are reviewed. And the numerical analysis for the two term variation of the stiffness is done for the several design parameters of the pantograph.

  • PDF