• Title/Summary/Keyword: Catalytic membrane reactor

Search Result 18, Processing Time 0.023 seconds

Hydrogen Separation and Production using Proton-Conducting Ceramic Membrane Catalytic Reactors (프로톤 전도성 세라믹 멤브레인 촉매 반응기를 이용한 수소 분리 및 제조 기술)

  • Seo, Minhye;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.596-605
    • /
    • 2019
  • Proton-conducting perovskite ceramic materials are highly promising for solid electrolytes as well as catalysts at high temperatures. Therefore, they possess an outstanding potential for the membrane reactor in which both reaction and separation occur at a same time. Especially, in the case of hydrogen production catalyst, hydrogen separation, and the membrane reactor coupled with catalyst and separation, extensive results have been reported on the effect of the dopant in the solid electrolytes, temperature, and composition of reactants on the performance. In this review, the recent research trend on the application of proton-conducting ceramic materials to hydrogen production catalyst, hydrogen separation, and membrane reactor is surveyed. Moreover, the potential application and prospect of these materials to the next-generation hydrogen production and separation is discussed.

Carbon-free Hydrogen Production Using Membrane Reactors (막촉매반응기를 이용한 수소생산)

  • Do, Si-Hyun;Roh, Ji Soo;Park, Ho Bum
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.297-306
    • /
    • 2018
  • This review focused carbon-free hydrogen productions from ammonia decomposition including inorganic membranes, catalysts and the presently studied reactor configurations. It also contains general information about hydrogen productions from hydrocarbons as hydrogen carriers. A Pd-based membrane (e.g. a porous ceramic or porous metallic support with a thin selective layer of Pd alloy) shows its efficiency to produce the high purity hydrogen. Ru-based catalysts consisted of Ru, support, and promoter are the efficient catalysts for ammonia decomposition. Packed bed membrane reactor (PBMR), Fluidized bed membrane reactor (FBMR), and membrane micro-reactor have been studied mainly for the optimization and the improvement of mass transfer limitation. Various types of reactors, which contain various combinations of hydrogen-selective membranes (i.e. Pd-based membranes) and catalysts (i.e. Ru-based catalysts) including catalytic membrane reactor, have been studied for carbon-free hydrogen production to achieve high ammonia conversion and high hydrogen flux and purity.

MODELLING OF A THREE-PHASE MEMBRANE REACTOR FOR THE PARTIAL OXIDATION OF PROPANE

  • Criscuoli, Alessandra;Espro, Claudia;Parmaliana, Adolfo;Drioli, Enrico
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.11-16
    • /
    • 2003
  • A mathematical model describing the performance of a three phase catalytic membrane reactor for the partial oxidation of propane has been developed. The theoretical study pointed out that the recovery of products in the gas phase is strongly related to the membrane hydrophobicity.

  • PDF

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

CATALYTIC MEMBRANE REACTOR FOR DEYDROGENATION OF WATER VIA GAS-SHIFT

  • Tosti, Silvano;Castelli, Stefano;Violante, Vittorio
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.43-47
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen purification and recovery in th fusion reactor fuel cycle. The development of techniques for coating microporous ceramic tubes with Pd and Pd/Ag layers is described: composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20${\mu}{\textrm}{m}$) and rolling of thin metal sheet (Pd and Pd/ Ag membranes of 50-70 ${\mu}{\textrm}{m}$). Experimental results on electroless membranes showed that the metallic film presented some defects and the membranes had not complete hydrogen selectivity . Then the catalytic membrane reactors with electroless membranes can be applied for some industrial processes that do not require a complete separation of the hydrogen (i.e. in the dehydrogenation of hydrocarbons). The rolled thin Pd/Ag membranes separated the hydrogen from the other gas with a complete selectivity and exhibited a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests confirmed the good performances in terms of durability.

  • PDF

Preparation of a Water-Selective Ceramic Membrane on a Porous Stainless Steel Support by Sol-Gel Process and Its Application to Dehydration Membrane Reactor

  • Lee, Kew-Ho;Sea, Bongkuk;Youn, Min-Young;Lee, Yoon-Gyu;Lee, Dong-Wook
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • We developed a water-selective ceramic composite membrane for use as a dehydration membrane reactor for dimethylether (DME) synthesis from methanol. The membranes were modified on the porous stainless steel support by the sol-gel method accompanied by a suction process. The improved membrane modification process was effective in increasing the vapour permselectivity by removal of defects and pinholes. The optimized alumina/silica composite membrane exhibited a water permeance of 1.14${\times}$10$^{-7}$ mol/$m^2$.sec.Pa and a water/methanol selectivity of 8.4 at permeation temperature of 25$0^{\circ}C$. The catalytic reaction for DME synthesis from methanol using the membrane was performed at 23$0^{\circ}C$, and the reaction conversion was compared with that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor was much higher than that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor and the conventional fixed-bed reactor was 82.5 and 68.0%, respectively. This improvement of reaction efficiency can last if the water vapour produced in the reaction zone is removed continuously.

Feasibility Study of Employing a Catalytic Membrane Reactor for a Pressurized CO2 and Purified H2 Production in a Water Gas Shift Reaction

  • Lim, Hankwon
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.425-432
    • /
    • 2014
  • The effect of two important parameters of a catalytic membrane reactor (CMR), hydrogen selectivity and hydrogen permeance, coupled with an Ar sweep flow and an operating pressure on the performance of a water gas shift reaction in a CMR has been extensively studied using a one-dimensional reactor model and reaction kinetics. As an alternative pre-combustion $CO_2$ capture method, the feasibility of capturing a pressurized and concentrated $CO_2$ in a retentate (a shell side of a CMR) and separating a purified $H_2$ in a permeate (a tube side of a CMR) simultaneously in a CMR was examined and a guideline for a hydrogen permeance, a hydrogen selectivity, an Ar sweep flow rate, and an operating pressure to achieve a simultaneous capture of a concentrate $CO_2$ in a retentate and production of a purified $H_2$ in a permeate is presented. For example, with an operating pressure of 8 atm and Ar sweep gas for rate of $6.7{\times}10^{-4}mols^{-1}$, a concentrated $CO_2$ in a retentate (~90%) and a purified $H_2$ in a permeate (~100%) was simultaneously obtained in a CMR fitted with a membrane with hydrogen permeance of $1{\times}10^{-8}molm^{-2}s^{-1}Pa^{-1}$ and a hydrogen selectivity of 10000.

Analysis of a Hydrogen Generation Membrane Reactor (수소 생산용 막반응기의 해석)

  • Kim Hyung Gyu;Suh Jung Chul;Baek Young Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.16-23
    • /
    • 2004
  • A membrane reactor concept, which combines the typical characteristics of chemical reaction with separation process, has been analyzed and simulated in this study. The advantages of the use of a membrane reactor include chemical equilibrium shift towards higher reactant conversion and purer product than the traditional reactors. A membrane reactor model which incorporates a catalytic reaction zone and a separation membrane is proposed. The water-gas shift reaction to produce hydrogen was chosen as a model reaction to be investigated. The membrane reactor is divided into smaller parts by number of n and each part (named cell), which contains both reaction and product separation function is modeled. One of the membrane outlet streams is connected to the next cell, which is repeated up to the last cell. The simulation results can be used for various purposes including decision of optimum operating condition and membrane reactor design.

  • PDF

Membrane reactors in gas phase oxidations

  • Bottino, A.;Capannelli, G.;Comite, A.;Felice, R.Di
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.33-36
    • /
    • 2003
  • This research was aimed at developing new catalytic membrane reactors to be used for : i) partial oxidation of toluene (to benzaldehyde and benzoic acid) ii) oxidative dehydrogenation of propane iii) complete oxidation of propane and toluene. The reactor is particularly useful for the optimisation and the industrial development of heterogeneous catalytic processes, particularly for those processes where it is necessary to control the reactants stoichiometry in the reaction zone. This control limits consecutive reactions, thus obtaining high selectivity with industrially interesting conversions. This presentation will concentrate on the partial oxidation of toluene.

  • PDF

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.