• Title/Summary/Keyword: Catalytic chemical reaction

Search Result 850, Processing Time 0.025 seconds

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

Synthesis of Long-Chain Unsaturated Acetates (장직쇄상(長直鎖狀) 불포화(不飽和) 초산화합물(醋酸化合物)의 합성(合成)에 관(關)한 연구(硏究))

  • Oh, Sung-Ki
    • Applied Biological Chemistry
    • /
    • v.19 no.1
    • /
    • pp.1-23
    • /
    • 1976
  • The female moths of Lepidoptera comprising over 1,000,000 described species possess long-chain unsaturated alcohols or esters as the typical structure of potential sex attractants. In this experiment, various stereoisomers of $C_{16}-unsaturated$ acetates were synthesized for potential sex attractants; e.g., $CH_3(CH_2)_mCH=CH(CH_2)_nOR$ (m=0-12, n=1-13, R=H and $-COCH_3$). Seventeen acetates were spectrometrically examined so that the data would provide a ready catalog of gas chromatography and mass spectrometric data for comparison with natural insect sex attractants. Exclusively cis and trans isomers were obtained by the catalytic and chemical reduction methods, respectively. Commercially available $CH_3(CH_2)_mBr,\;CH_3(CH_2)_mC{\equiv}CH,\;HC{\equiv}C(CH_2)_nOH\;and\;HO(CH_2)_n\;OH$ were used for the synthetic starting material. 1-Alkynes, $CH_3(CH_2)_m\;C{\equiv}CH$ exceeding nine methylene groups did not condense with alkyl dihalides. The yield of coupling products was gradually decreased with increasing the molecular weight of diols. In the coupling reaction of $BrCH_2CH_2$ OTHP with acetylene gas, the tetrahydropyranyl ether of bromohydrin produced undesirable elimination product. In this experiment, it seems that p-toluenesulfonic acid is greatly favoured hydrolyzing agent over dilute sulfuric acid in the hydrolysis of the tetrahydropyranyl ether of long-chain alkynols.

  • PDF

Improvement of DeNOx efficiency of SNCR Process with Chemical Additives in Urea Soution (환원제로 우레아를 사용하는 SNCR 공정에서 첨가제 적용에 따른 탈질효율 향상 연구)

  • Yoo, Kyung Seun;Park, Sung Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.663-668
    • /
    • 2017
  • Dye waste water generated in the dye industry is categorized as hazardous waste water that requires appropriate treatment. The pilot scale experimental trials were carried out using dye waste water as an effective additive for the selective non-catalytic reduction (SNCR) of NOx in combustion flue gases. The additives were waste liquor obtained from the dye industry and several purification steps were taken to make a standardized reagents. The dye waste water was shown to possess valuable SNCR qualities (at least 87% NOx reduction efficiency) considering its availability as a waste product, which has to be strictly treated, and have little effects on CO removal. The results indicated that the NO removal efficiency increased first and then decreased with increasing temperature within $750-1150^{\circ}C$. The maximum NO reduction efficiency was approximately 87% at the optimal reaction temperature. A more than 10% increase in NO reduction was achieved in the presence of 1000 ppm Na-additives (dye waste water) compared to that without additives. The Na-based additives have also a significant promoting effect on $N_2O$ reduction and within the SNCR temperature window.

Shape-Selective Catalysis over Zeolite. An Attempt in the Alkylation of Biphenyl

  • Sugi, Yoshihiro;Komura, Kenichi;Kim, Jong Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.235-242
    • /
    • 2006
  • Liquid phase alkylation of biphenyl (BP) was studied over large pore zeolites. Selective formation of the least bulky products, 4,4'-diisopropylbiphenyl (4,4'-DIPB) occurred only in the isopropylation of BP over some large pore molecular sieves. H-mordenites (MOR) gave the highest selectivity among them. The dealumination of MOR enhanced catalytic activity and the selectivity of 4,4'-DIPB because of the decrease of coke-deposition. Non-selective catalysis occurs on external acid sites over MOR with the low $SiO_2/Al_2O_3$ ratio because severe coke-deposition deactivates the acid sites inside the pores by blocking pore openings. The selectivity of DIPB isomers was changed with reaction temperature. Selective formation of 4,4'-DIPB was observed at moderate temperatures such as $250^{\circ}C$, whereas the decrease of the selectivity of 4,4'-DIPB occurred at higher temperatures as $300^{\circ}C$. However, 4,4'-DIPB was almost exclusive isomer in the encapsulated DIPB isomers inside the pores even at high temperatures. These decreases of the selectivity of 4,4'-DIPB are due to the isomerization of 4,4'-DIPB on the external acid sites. Some 12-membered molecular sieves, such as SSZ-24, MAPO-5 (M:Mg, Zn, Si), SSZ-31, and ZSM-12, which have straight channels, gave 4,4'-DIPB with moderate to high selectivity; however; SSZ-55, SSZ-42, and MAPO-36 (M: Mg, Zn) gave lower selectivity because of cages in 12-membered one dimensional channels. Three dimensional H-Y and Beta zeolites also yield 4,4'-DIPB in low yield because of their wide circumstances for the isopropylation of BP. The increasing the size of alkylating agent enhanced the shape-selective alkylaiton even for the zeolites, such as UTD-1. The ethylation of BP to ethylbiphenyls (EBPs) and diethylbiphenyls (DEBPs) over MOR was non-selective. The ethylation of BP to EBPs was controlled kinetically. However, there was difference in reactivity of EBPs and DEBPs for their further ethylation. 4-EBP was ethylated preferentially among the isomers, although the formation of 4,4'-DEBP was less selective. The least bulky 4-EBP and 4,4'-DEBP have the highest reactivity among EBPs and DEBPs for the ethylation to polyethylbiphenyls (PEBPs). These results show that the environments of MOR pores are too loose for shape selective formation of the least bulky isomers, 4-EBP and 4,4'-DEBP in the ethylation of BP, and that MOR pores have enough space for the further ethylation of 4,4'-DEBP.

Synthesis of Prussian Blue Analogue and Magnetic and Adsorption Characteristics of MnFe2O4 (프러시안 블루 유사체의 합성 및 MnFe2O4의 자성과 흡착 특성)

  • Lee, Hye-In;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The Prussian Blue Analogue(PBA) has three dimensional structure and the metal - organic framework material, and it has a variety configurations depending on the type of organic ligands. PBA has been receving an attention in the fields of biosensors, optical, catalytic, and hydrogen storage device. Also, it is an environmental friendly substance with a chemical stability. In addition, PBA is widely used in the filed of adsorption art since we can adjust the size of the fine pores. In this study, we synthesized $Mn_3[Fe(CN)_6]_2$, an organometallic framework chains by using a hydrothermal synthesis method. We used $K_4[Fe(CN)_6]$ and $MnCl_2$ as precursors. We also produced a manganese iron oxide, by baking the synthesized material. The effect of the size and shape of the particles was examined by controling pH of the precursor solution, the molar concentration of the precursor, and reaction time as the experimental variables. Synthesized absorbent was analyzed by XRD, SEM, FT-IR, UV-Vis, and TG / DTA to evaluate the adsorption properties of several dyes.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

Analysis of Experiments for the Rules of Material Change Unit in 9th Grade Science Textbooks and the Development of Experiments Applying Small-Scale Chemistry (9학년 과학교과서 물질변화에서의 규칙성 단원 실험 분석과 Small-Scale Chemistry를 적용한 실험 개발)

  • Ryu, Ran-Yeong;Kim, Dong-Jin;Hwang, Hyun-Sook;Park, Se-Yeol;Lee, Sang-Kwon;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.529-540
    • /
    • 2011
  • The purpose of this study was to analyze experiments for the rules of material change unit in 9th grade science textbooks and develop experiments applying small-scale chemistry (SSC). For this study, experimental methods for the precipitation experiment, water electrolysis experiment, decomposition of hydrogen peroxide experiment presented in the 9 science textbooks were analyzed. Problems and improvements that were needed were extracted by 13 science teachers performing the experiments. Experiments applying SSC were developed based on the improvements needed. Afterwards, 19 pre-service science teachers performed both the developed SSC experiments and the science textbooks' experiments. A questionnaire about merits and demerits of the experiments applying SSC was performed. According to the results of this study, most of the 9th grade science textbooks included the lead iodide precipitation experiment, water electrolysis experiment by Hoffman voltameter, and decomposition of hydrogen peroxide experiment using catalytic manganese dioxide. Improvements were needed on the quantity of reagents, time for performing experiments, and scale of experimental apparatus. Merits of the developed experiments applying SSC which used small amount of reagents were safety, easy waste material disposal, short reaction time, and reproducible experimental results. Demerits of the experiments applying SSC were difficulty in observing, decreased achievement, and lack of skill in handling small-scale apparatus. Therefore, if the experiments developed applying SSC were to be utilized in 9th grade science experiments, it will be possible to use less reagent and be able to teach and carry out reproducible experiments at the same time. Also, the reproducible experiments based on SSC will help students under stand the scientific concepts for the rules of material change unit.

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

Separation of Wood Components by Acetone (아세톤에 의한 목재 조성분의 분리)

  • Song, Byung-Hee;Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.230-241
    • /
    • 2010
  • The purpose of this study was to seek the optimum condition for effective separation of the chemical constituents of wood biomass by means of hydrolysis of acetone solution in presence of acid salt as a catalyst. Out of diverse acid salts the catalytic effect of aluminum sulfate ($Al_2(SO_4)_3$) was the most excellent during the hydrolysis of wood biomass in the acetone solution and the optimum concentration was 0.01 M (6.3 wt%). In the condition of mixture ratio of acetone and water to 9 : 1 as well as optimum concentration of aluminum sulfate two wood biomass species, oak wood (Quercus mongolica Fischer) and Pine wood (Pinus densiflora Sieb. et Zucc.), was hydrolyzed for 45 minutes at $200^{\circ}C$ and the degree of hydrolysis was determined to 92.7% and 92.4%, respectively. Extending the reaction time to 60 minutes in the mixture ratio of acetone and water to 8 : 2 the degree of hydrolysis of oak wood was also ca. 92.7%. In the case of Pinus, however, the similar hydrolysis ratio was obtained at $210^{\circ}C$. As the temperature and hydrolysis time increased, the quantitative amount of lignin recovered from the hydrolysate clearly increased, whereas the total amount of carbohydrates in the hydrolysate decreased rapidly. Considering the recoverable amount of lignin and carbohydrate in the hydrolysate, the best condition for the hydrolysis of wood biomasses were confirmed to the mixture ratio of acetone and water to 8 : 2, the concentration of aluminum sulfate of 6.3 wt%, hydrolysis temperature of $190^{\circ}C$ for 60 minutes. In this condition the total amounts of carbohydrate in the hydrolysates of oak wood and pine wood were estimated to 47.6% and 51.4%, respectively. The amount of lignin recovered from the hydrolysates were ca. 18.2% for oak wood and 13.7% for pine wood.