DOI QR코드

DOI QR Code

Separation of Wood Components by Acetone

아세톤에 의한 목재 조성분의 분리

  • Song, Byung-Hee (Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University) ;
  • Ahn, Byoung-Jun (Division of Forest Bioenergy, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Paik, Ki-Hyon (Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University)
  • 송병희 (고려대학교 생명과학대학 환경생태공학부) ;
  • 안병준 (국립산림과학원 녹색자원이용부 바이오에너지연구과) ;
  • 백기현 (고려대학교 생명과학대학 환경생태공학부)
  • Received : 2010.02.01
  • Accepted : 2010.04.07
  • Published : 2010.05.25

Abstract

The purpose of this study was to seek the optimum condition for effective separation of the chemical constituents of wood biomass by means of hydrolysis of acetone solution in presence of acid salt as a catalyst. Out of diverse acid salts the catalytic effect of aluminum sulfate ($Al_2(SO_4)_3$) was the most excellent during the hydrolysis of wood biomass in the acetone solution and the optimum concentration was 0.01 M (6.3 wt%). In the condition of mixture ratio of acetone and water to 9 : 1 as well as optimum concentration of aluminum sulfate two wood biomass species, oak wood (Quercus mongolica Fischer) and Pine wood (Pinus densiflora Sieb. et Zucc.), was hydrolyzed for 45 minutes at $200^{\circ}C$ and the degree of hydrolysis was determined to 92.7% and 92.4%, respectively. Extending the reaction time to 60 minutes in the mixture ratio of acetone and water to 8 : 2 the degree of hydrolysis of oak wood was also ca. 92.7%. In the case of Pinus, however, the similar hydrolysis ratio was obtained at $210^{\circ}C$. As the temperature and hydrolysis time increased, the quantitative amount of lignin recovered from the hydrolysate clearly increased, whereas the total amount of carbohydrates in the hydrolysate decreased rapidly. Considering the recoverable amount of lignin and carbohydrate in the hydrolysate, the best condition for the hydrolysis of wood biomasses were confirmed to the mixture ratio of acetone and water to 8 : 2, the concentration of aluminum sulfate of 6.3 wt%, hydrolysis temperature of $190^{\circ}C$ for 60 minutes. In this condition the total amounts of carbohydrate in the hydrolysates of oak wood and pine wood were estimated to 47.6% and 51.4%, respectively. The amount of lignin recovered from the hydrolysates were ca. 18.2% for oak wood and 13.7% for pine wood.

본 연구는 산염이 첨가된 아세톤 용액으로 목질바이오매스를 가수분해하여 효과적으로 화학적 조성분을 분리할 수 있는 최적조건을 확립하는데 있다. 아세톤에 의한 목질바이오매스의 가수분해에서 $Al_2(SO_4)_3$은 우수한 촉매로 작용하였으며, 최적 농도는 0.01 M (6.3 wt%)였다. 본 실험에서는 아세톤과 물의 비율을 9 : 1로 맞추고 $Al_2(SO_4)_3$의 최적 농도조건에서 신갈나무재와 소나무재를 $200^{\circ}C$에서 45분 동안 가수분해하여 각각 92.7%와 92.4% 분해율을 나타냈다. 아세톤과 물의 비율이 8 : 2에서는 반응시간을 60분으로 연장하였을 경우 신갈나무재의 가수분해율은 92.7%였으나, 소나무재는 반응온도를 $210^{\circ}C$로 상승시켜야 신갈나무재에 버금가는 가수분해율을 얻을 수 있었다. 가수분해 온도와 시간을 증가시키면 가수분해산물로부터 분리, 회수되는 리그닌은 증가하였으나, 탄수화물 함량은 급격히 감소하는 경향을 보였다. 리그닌과 당의 회수량을 고려해 보면, 목질바이오매스의 최적 가수분해 조건은 아세톤과 물의 비율 8 : 2, 아세톤 용액에 대한 $Al_2(SO_4)_3$ 농도는 6.3 wt%, 가수분해 온도와 시간은 각각 $190^{\circ}C$와 60분으로 나타났고, 이 조건에서 당의 회수율은 목질바이오매스 전건중량 기준으로 신갈 나무재와 소나무재에서 각각 47.6%와 51.4%로 나타났고, 리그닌 회수율은 각각 18.2%와 13.7%로 측정되었다.

Keywords

References

  1. Albersheim, P., D. N. Nevins, P. D. English, and A. Karr. 1967. A new method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydr. Res. 5: 340. https://doi.org/10.1016/S0008-6215(00)80510-8
  2. American wood-preserver's association. 1997. Book of standards. wood stock, MD. A21-93.
  3. Araque, E., C. Parra, J. Free, D. Contreras, J. Rodriguez, and R. Mendonca. 2008. Evaluation of organosolv pretreatment for the conversion of pinus radiata D. Don to ethanol. Enzyme Microb Technol. 43: 214-219. https://doi.org/10.1016/j.enzmictec.2007.08.006
  4. Aziz, S. and K. Sarkanen. 1989. Organosolv pulping-a review. Tappi Jour. 72(3): 169-175.
  5. Chang, R. P. 1990. Method for continuous countercurrent organosolv saccharification of comminuted lignocellulosic materials, USP. 4.941.944.
  6. Chen, C. C. and G. D. McGinns. 1981. The use of 1-methylimidazole as a solvent and catalyst for the preparation of aldonitrile acetates of aldoses. Carbohydr. Res. 90: 127-130. https://doi.org/10.1016/S0008-6215(00)85619-0
  7. Cho, H. J. and L. Paszner. 1987. Processing of lignins to converging chemical by-products, Part I, macrostructure and shape of ACOS organosolv hydrolysis lignin. In: Granger C (ed) 6th Canadien Bioenergy Research and Desing Seminar, pp. 364-367.
  8. Enkvist, T., J. Turunen, and T. Ashorn. 1962. The demethylation and degradation of lignin or spent liquors by heating alkaline reagents. Tappi Jour. 45: 128-135.
  9. Claassen, P. A. M., J. B. van Lier, A. M. L. Contreras, E. W. J. van Niel, L. Sijtsma, A. J. M. Stams, S. S. de Vries, and R. A. Weusthuis. 1999. Utilization of biomass for the supply of energy carriers. Appl Microbiol Biotechnol. 52: 741-755. https://doi.org/10.1007/s002530051586
  10. Galbe, M. and G. Zacchi. 2002. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 59: 618-628. https://doi.org/10.1007/s00253-002-1058-9
  11. Hasegawa, I., K. Tabata, O. Okuma, and K. Mae. 2004. New pretreatment methods combinding a hot water treatment and water/acetone extraction for thermo-chemical conversion of biomass. Energy & Fuel. 18: 755-760. https://doi.org/10.1021/ef030148e
  12. Kamm B. and M. Kamm. 2004. Principles of biorefineries. Microbiol Biotechnol. 64: 137-145. https://doi.org/10.1007/s00253-003-1537-7
  13. Kamm B. and M. Kamm. 2006. Biorefinery-System. Chem. Biochem. Eng. Q. 18: 1-6.
  14. Kamm, B., P. R. Gruber, and M. Kamm. 2006. Biorefieries-Industrial Processes and Products. Wiley-VCH Verlag, p. 113.
  15. Lohrasebi, A. H. and L. Paszner. 2001. Predictive modeling of high pressure NAEM-catalyzed (HP-ALpulp) organosolv pulping of spruce. Tappi Jour. 84: 2-3.
  16. Lora J. H., A. W. Creamer, L. C. F. Wu, and G. C. Goyal. 1991. Chemicals generated during alcohol pulping. In: Proceedings of the 6th International Symposium on Wood and Pulping Chemistry, May 12-16, Melbourne. pp. 431-438.
  17. Lora J. H. and W. G. Glasser. 2002. Recent industrial applications od lignin: a sustainable alternative to nonrenewable materials. J Polym Environ. 10: 39-48. https://doi.org/10.1023/A:1021070006895
  18. Mabee, W., D. Greegg, C. Arato, A. Berlin, R. Bura, N. Gilkes, O. Mirochnik, X. J. Pan, K. Pye, and J. Saddler. 2006. Updates on softwood-to ethanol process development. Appl Biochem Biotechnol. 129: 55-70. https://doi.org/10.1385/ABAB:129:1:55
  19. McDonough, T. J. 1993. The chemistry of organosolv delignification, Tappi Jour. 76: 186-193.
  20. Muurinen, E. 2000. Organosolv pulping-a review and distillation study related to peroxyacid pulping. FIN-90014 University of Oula, http://herkules.oulu.fi/isbn9514256611/isbn9514256611.pdf.
  21. Pan, X. J., C. Arato, N. Gilkes, D. Greegg, W. Mabee, K. Pye, Z. Xiao, X. Zhang, and J. Saddler. 2005. Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of Fuel-grade ethanol and co-products. Biotechnology and Bioengineering. 90: 473-481. https://doi.org/10.1002/bit.20453
  22. Parajo, J. C., J. L. Alonso, and D. Vazquez. 1993. On the behaviour of lignin and hemicelluloses during the acetosolv processing of wood, Bioresource Technology, 46: 233-240. https://doi.org/10.1016/0960-8524(93)90126-V
  23. Paszner, L. and P. C. Chang. 1981. Organosolv delignification and saccharification process for lignocellulose plant materials. CAP. 1.100.266.
  24. Paszner, L. and P. C. Chang. 1983. Organosolv saccharification process. USP. 4.409.032.
  25. Paszner, L. and P. C. Chang. 1984. High eficiency organosolv saccharification process. 4.470.851.
  26. Paszner, L. and H. J. Cho. 1988. High efficiency conversion of lignocellulosics to sugars for liquid fuel production by the ACOS process. Energy exploitation & exploration. 6(1): 39-60. https://doi.org/10.1177/014459878800600104
  27. Paszner, L., A. A. Quinde, and M. Meshgini. 1985. ACOS - accelerated hydrolysis of wood by acid catalysed drganosov means. International Symposium on Wood by Pulping Chemistry, Vancouver, Canada, pp. 235-240.
  28. Sakanen, K. V. 1990. Chemistry of solvent pulping, Tappi Jour. 50: 215-219.
  29. Sakanen, K. V., H. M. Chang, and G. G. Allan. 1967a. Species variation in lignins I. Conifer lignins. Tappi Jour. 50: 583-587.
  30. Sakanen, K. V., H. M. Chang, and G. G. Allan. 1967b. Species variation in lignins II. Conifer lignins. Tappi Jour. 50: 587-590.
  31. Sinner, M., H. Dietrichs., J. puls., S. Werner, and K. Heinz.. 1985. Process for production of sugars and optionally cellulose and lignin for lignocellulosic raw materials. USP.. 4, 520, 105.
  32. Wyman, C. E. 1994. Ethanol from lignocellulosic biomass-technology, economic, and opportunities. Bioresour Technology, 50: 3-16. https://doi.org/10.1016/0960-8524(94)90214-3
  33. Zhang, Y. H. P., S. Y. Ding, J. R. Mielenz, J. B. Cui, R. T. Elander, M. Laser, M. E. Himmel, J. R. McMillan, and L. R. Lynd. 2007. Fractionating recalcitrant lignocellulosic at modest reaction conditions. Biotechnology and Bioengineering. 97(2): 214-223. https://doi.org/10.1002/bit.21386
  34. Zhao, X., K. Cheng, and D. Liu. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol. 82: 815-827.