Browse > Article
http://dx.doi.org/10.12925/jkocs.2016.33.1.67

Synthesis of Prussian Blue Analogue and Magnetic and Adsorption Characteristics of MnFe2O4  

Lee, Hye-In (Department of Engineering Chemistry, Chungbuk National University)
Kang, Kuk-Hyoun (Department of Engineering Chemistry, Chungbuk National University)
Lee, Dong-Kyu (Department of Engineering Chemistry, Chungbuk National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.33, no.1, 2016 , pp. 67-74 More about this Journal
Abstract
The Prussian Blue Analogue(PBA) has three dimensional structure and the metal - organic framework material, and it has a variety configurations depending on the type of organic ligands. PBA has been receving an attention in the fields of biosensors, optical, catalytic, and hydrogen storage device. Also, it is an environmental friendly substance with a chemical stability. In addition, PBA is widely used in the filed of adsorption art since we can adjust the size of the fine pores. In this study, we synthesized $Mn_3[Fe(CN)_6]_2$, an organometallic framework chains by using a hydrothermal synthesis method. We used $K_4[Fe(CN)_6]$ and $MnCl_2$ as precursors. We also produced a manganese iron oxide, by baking the synthesized material. The effect of the size and shape of the particles was examined by controling pH of the precursor solution, the molar concentration of the precursor, and reaction time as the experimental variables. Synthesized absorbent was analyzed by XRD, SEM, FT-IR, UV-Vis, and TG / DTA to evaluate the adsorption properties of several dyes.
Keywords
Adsorption; Prussian blue analogues; Metal organic framworks; Manganese Ferrite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lin H., Ping Z., Qianwang C., Jiyang M., "Prussian Blue Analogue $Mn_3Co(CN)_6_2.nH_2O$ porous nanocubes :large-scale synthesis and their $CO_2$ storage properties", Dalton. T., 40, 5557-5562 (2011).   DOI
2 Yaghi M., Michael O., Nathan W., Hee Chae K., "Reticular synthesis and the design of new materials", Cah. Rev. The., 423, 705-714 (2003).
3 Sittichai N., Jeffrey T., Christopher M., Bradley B., "Adsorption Properties of Hydrogen and Carbon Dioxide in Prussian Blue Analogues $M_3Co(CN)_6_2$, M = Co, Zn", J. Phys. Chem. C., 111, 1055-1060 (2007).   DOI
4 Yaghi O., Hai Lian L., Eddaoudi M., "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", Nature, 402, 276-279 (1999).   DOI
5 Robson R., Hoskins B., "Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments", J. Am. Chem. Soc., 111, 5962-5964 (1989).   DOI
6 Stephen C., Samuel L., Jonathan C., Guy O., Ian W., "A Chemically Functionalizable Nanoporous Material [$Cu_3(TMA)_2(H_2O)_3]_n$", Science, 283, 1148-1150 (1999).   DOI
7 Ming H., Nagy L., Torad K., Ya Dong C., Kevin C., Yusuke Yamauchi W., "Size and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinyl pyrrolidone-assisted crystallization pro cess", Cryst. Eng., 14, 3387-3396 (2012).   DOI
8 Steven C., Jeffrey R., "Hydrogen Storage in the Dehydrated Prussian Blue Analogues $M_3[Co(CN)_6]_2$ (M = Mn, Fe, Co, Ni, Cu, Zn)", J. Am. Chem. Soc., 127, 6506-6507 (2005).   DOI
9 Gearard fea R., Christian S., Franck M., "Crystallized Frameworks with Giant Pores: Are There Limits to the Possible?", Accounts. Chem. Res., 38, 217-225 (2005).   DOI
10 Takashi U., Masaaki O., Susumu K., "Size and Surface Effects of Prussian Blue Nanoparticles Protected by Organic Polymers", Inorg. Chem., 543, 7339-7345 (2004).
11 Walton K., Snurr R., "Applicability of the BET method for determining surface areas of microporous metal-organic frameworks", J. Am. Chem. Soc., 129, 8552-8556 (2007).   DOI
12 Enamul H., Nazmul Abedin K., Jung Hwa P., Sung Hwa J. "Synthesis of a Metal- Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study", J. Chem. Eur., 16, 1046-1052 (2009).
13 Byrappa K., Adschiri T., "Hydrothermal technology for nanotechnology", Prog. Cryst. Growth. Ch., 53, 117-166 (2007).   DOI
14 Fumiyuki S., Ryosuke F., Takashi K., Yusu ke O., "Preparation of Monodisperse Coba lt(II) Hexacyanoferrate(III) Nanoparticles U sing Cobalt Ions Released from a Citrate Complex", J. Am. Chem. Soc., 116, 3394-3399 (2012).
15 Zhongli W., Xiaojuan L., Minfeng L., Ping C., Yao L., Xianfeng Z., Jian M., "Preparation of One-Dimensional $CoFe_2O_4$ Nanostructures and Their Magnetic Properties", J. Am. Chem. Soc., 112, 15171-15175 (2008).
16 Banalata S., Sumanta Kumar S., Suryak anta N., Dibakar D., Panchanan P.,"Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants", Stud. Surf. Sci. Catal., 2, 1367-1374 (2012).
17 Jun W., Qianwang C., Binyang H., Zhe nmeng P., "Synthesis and Magnetic Properties of Single-Crystals of $MnFe_2O_4$ Nanorods", EUR. J. INORG. CHEM., 2004, 1165-1168 (2004).
18 Ghercaa D., Puia A., Nicab V., Caltunb O., Cornei N., "Eco-environmental synthesis and characterization of nanophase powders of Co, Mg, Mn and Ni ferrites", CERAM. INT., 40, 9599- 9607 (2014).   DOI