Browse > Article

Shape-Selective Catalysis over Zeolite. An Attempt in the Alkylation of Biphenyl  

Sugi, Yoshihiro (Department of Materials Science and Technology, Faculty of Engineering, Gifu University)
Komura, Kenichi (Department of Materials Science and Technology, Faculty of Engineering, Gifu University)
Kim, Jong Ho (Department of Applied Chemical Engineering and The Research Institute for Catalysis, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.17, no.3, 2006 , pp. 235-242 More about this Journal
Abstract
Liquid phase alkylation of biphenyl (BP) was studied over large pore zeolites. Selective formation of the least bulky products, 4,4'-diisopropylbiphenyl (4,4'-DIPB) occurred only in the isopropylation of BP over some large pore molecular sieves. H-mordenites (MOR) gave the highest selectivity among them. The dealumination of MOR enhanced catalytic activity and the selectivity of 4,4'-DIPB because of the decrease of coke-deposition. Non-selective catalysis occurs on external acid sites over MOR with the low $SiO_2/Al_2O_3$ ratio because severe coke-deposition deactivates the acid sites inside the pores by blocking pore openings. The selectivity of DIPB isomers was changed with reaction temperature. Selective formation of 4,4'-DIPB was observed at moderate temperatures such as $250^{\circ}C$, whereas the decrease of the selectivity of 4,4'-DIPB occurred at higher temperatures as $300^{\circ}C$. However, 4,4'-DIPB was almost exclusive isomer in the encapsulated DIPB isomers inside the pores even at high temperatures. These decreases of the selectivity of 4,4'-DIPB are due to the isomerization of 4,4'-DIPB on the external acid sites. Some 12-membered molecular sieves, such as SSZ-24, MAPO-5 (M:Mg, Zn, Si), SSZ-31, and ZSM-12, which have straight channels, gave 4,4'-DIPB with moderate to high selectivity; however; SSZ-55, SSZ-42, and MAPO-36 (M: Mg, Zn) gave lower selectivity because of cages in 12-membered one dimensional channels. Three dimensional H-Y and Beta zeolites also yield 4,4'-DIPB in low yield because of their wide circumstances for the isopropylation of BP. The increasing the size of alkylating agent enhanced the shape-selective alkylaiton even for the zeolites, such as UTD-1. The ethylation of BP to ethylbiphenyls (EBPs) and diethylbiphenyls (DEBPs) over MOR was non-selective. The ethylation of BP to EBPs was controlled kinetically. However, there was difference in reactivity of EBPs and DEBPs for their further ethylation. 4-EBP was ethylated preferentially among the isomers, although the formation of 4,4'-DEBP was less selective. The least bulky 4-EBP and 4,4'-DEBP have the highest reactivity among EBPs and DEBPs for the ethylation to polyethylbiphenyls (PEBPs). These results show that the environments of MOR pores are too loose for shape selective formation of the least bulky isomers, 4-EBP and 4,4'-DEBP in the ethylation of BP, and that MOR pores have enough space for the further ethylation of 4,4'-DEBP.
Keywords
alkylation; biphenyl; shape-selectivity; large pore molecular sieves; H-mordenite; dealumination; external acid sites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Sugi, Y. Kubota, A. Ito, H. Maekawa, R. K. Ahedi, S. Watanabe, C. Asaoka, H.-S. Lee, J.-H. Kim, and G. Seo, Shokubai, 45, 114 (2003)
2 G. Takeuchi, H. Okazaki, T. Kito, Y. Sugi, and T. Matsuzaki, Sekiyu Gakkaishi, 34, 242 (1991)   DOI
3 J. Horniakov, D. Mravec, M. Krlik, J. Leko, P. Graffin, and P. Moreau, Appl. Catal. A: Gen., 215, 235 (2001)   DOI   ScienceOn
4 Y. Sugi, Y. Kubota, S. Tawada, S. Noda, I. Toyama, H. Ito, K. Sakakibara, S. Watanebe, T. Matsuzaki, T. Hanaoka, and J.-H. Kim, Shokubai, 43, 113 (2002)
5 P. B. Venuto, Micropor. Mater., 2, 297 (1994)   DOI   ScienceOn
6 C. Song and A. D. Schmitz, Sekiyu Gakkaishi, 42, 275 (1999)   DOI
7 H. Maekawa, S. K. Saha, S. A. R. Mulla, S. B. Waghmode, K. Komura, Y. Kubota, and Y. Sugi, Submitted to Appl. Catal. A: Gen
8 T. Matsuda and E. Kikuchi, Stud. Surf. Sci. Catal., 83, 295 (1994)   DOI
9 L. Meyers, T. H. Fleisch, G. J. Ray, J. T. Miller, and J. B. Hall, J. Catal., 110, 82 (1988)   DOI
10 Y. Sugi, S. Tawada, T. Sugimura, Y. Kubota, T. Hanaoka, T. Matsuzaki, K. Nakajima, and K. Kunimori, Appl. Catal. A: Gen., 189, 251 (1999)   DOI   ScienceOn
11 M. Bandyopadhyay, R. Bandyopadhyay, S. K. Tawada, Y. Kubota, and Y. Sugi, Appl. Catal. A: Gen., 225, 51 (2002)   DOI
12 Y. Sugi, Y. Kubota, S. Tawada, S. Noda, I. Toyama, H. Ito, K. Sakakibara, S. Watanabe, T. Matsuzaki, and T. Hanaoka, Shokubai, 43, 113 (2002)
13 G. S. Lee, J. J. Maj, S. C. Rocke, and J. M. Garces, Catal. Lett., 2, 243 (1989)   DOI
14 S. K. Saha, S. B. Waghmode, H. Maekawa, R. Kawase, K. Komura, Y. Kubota, and Y. Sugi, Micropor. Mesopor. Mater., 81, 277 (2005)   DOI
15 R. Ahedi, K. Tawada, S. Kubota, Y. Sugi, and J.-H. Kim, J. Mol. Catal., A: Chem., 197, 133 (2003)   DOI
16 J. Horniakova, D. Mravec, J. Joffre, and P. Moreau, J. Mol. Catal. A: Chem., 185, 249 (2002)   DOI
17 K. Nakajima, T. Hanaoka, Y. Sugi, T. Matsuzaki, Y. Kubota, A. Igarashi, and K. Kunimori, ACS Symp. Ser., 738, 260 (1999)
18 P. T. Anastas and T. C. Williamson, (eds.), in 'Green Chemistry. Frontiers in Benign Chemical Synthesis and Processes,' Oxford University Press, Oxford (1998)
19 Y. Sugi, Y. Kubota, T. Hanaoka, and T. Matsuzaki, Catal. Survey Jpn., 5, 43 (2001)   DOI   ScienceOn
20 M. Guisnet and P. Magnoux, Appl. Catal., 54, 1 (1989)   DOI
21 M. Sawa, M. Niwa, and Y. Murakami, Appl. Catal., 53, 169 (1989)   DOI
22 D. L. Dorset, S. C. Weston, and S. S. Dhingra, J. Phys. Chem. B, 110, 2045 (2006)   DOI   ScienceOn
23 T. Matsuzaki, Y. Sugi, T. Hanaoka, K. Takeuchi, H. Arakawa, T. Tokoro, and G. Takeuchi, Chem. Express, 4, 413 (1989)
24 Y. Sugi, T. Matsuzaki, T. Hanaoka, K. Takeuchi, T. Tokoro, and G. Takeuchi, Stud. Surf. Sci, Catal., 60, 303 (1991)   DOI
25 Y. Sugi, Y. Kubota, A. Ito, H. Maekawa, R. K. Ahedi, S. Tawada, S. Watanabe, I. Toyama, C. Asaoka, H.-S. Lee, J.-H. Kim, and G. Seo, Stud. Surf. Sci. Catal., 154, 2228 (2005)
26 S. Tawada, Y. Sugi, Y. Kubota, Y. Imada, T. Hanaoka, T. Matsuzaki, K. Nakajima, K. Kunimori, and J.-H. Kim, Catal. Today, 60, 243 (2000)   DOI
27 J.-H. Kim, Y. Sugi, T. Matsuzaki, T. Hanaoka, Y. Kubota, X. Tu, M. Matsumoto, A. Kato, G. Seo, and C. Pak, Appl. Catal., A: Gen., 131, 15 (1995)   DOI   ScienceOn
28 H. Maekawa, A. Ito, H. Kawagoe, K. Komura, Y. Kubota, and Y. Sugi, Submitted to Micropor. Mesopor. Mater.
29 S. K. Saha, S. B. Waghmode, H. H. Maekawa, K. Komura, Y. Kubota, Y. Sugi, Y. Oumi, and T. Sano, Micropor. Mesopor. Mater., 81, 289 (2005)   DOI
30 S. Bhatia, J. Beltramini, and D. D. Do, Catal. Rev. Sci. Eng., 31, 431 (1989-90)   DOI
31 P. Dejaifve, A. Auroux, P. C. Gravelle, J. C. Vedrine, Z. Gabelica, and E. G. Derouane, J. Catal., 70, 123 (1981)   DOI
32 A. Maekawa, C. Naitoh, K. Nakagawa, K. Komura, Y. Kubota, Y. Sugi, D.-H. Choi, J.-H. Kim, and G. Seo, Submitted to Catal. Lett.
33 S. M. Csicsery, Zeolite, 4, 202 (1984)   DOI   ScienceOn
34 Y. Sugi and T. Hanaoka, Sekiyu Gakkaishi, 41, 193 (1998)   DOI   ScienceOn
35 Y. Sugi, Catal. (Shokubai), 47, 213 (2005)
36 Y. Sugi, S. Tawada, T. Sugimura, and Y. Kubota, Catal. Lett., 77, 159 (2001)   DOI
37 Manuscript in preparation
38 Y. Sugi, Korean J. Chem. Eng., 17, 1 (2001)
39 H. G. Karge and J. Weitkamp, Chem. Ind. Tech., 58, 946 (1986)   DOI   ScienceOn
40 A. Katayama, M. Toba, G. Takeuchi, F. Mizukami, S. Niwa, and S. Mitamura, J. Chem. Soc., Chem. Commun., 39 (1991)
41 M. Matsumoto, X. Tu, Y. Sugi, T. Matsuzaki, T. Hanaoka, Y. Kubota, J.-H. Kim, K. Nakajima, A. Igarashi, and K. Kunimori, Stud. Surf. Sci. Catal., 105, 1317 (1997)   DOI
42 Y. Kubota, S. Tawada, C. Naitoh, K. Nakagawa, N. Sugimoto, Y. Fukushima, and Y. Sugi, Shokubai, 41, 380 (1999)
43 S. A. R. Mulla, S. B. Waghmode, S. Watanabe, Maekawa, K. Komura, Y. Kubota, Y. Sugi, J.-H. Kim, and G. Seo, Bull. Chem. Soc. Jpn., in press