• Title/Summary/Keyword: Catalytic Surface Reaction

Search Result 378, Processing Time 0.029 seconds

A Density-Functional Theory Study on Mechanisms of the Electrochemical Nitrogen Reduction Reaction on the Nickel(100) Surface (범밀도함수이론에 기초한 니켈(100) 표면에서의 전기화학적 질소환원반응 메커니즘에 관한 연구)

  • Minji Kim;Sangheon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.604-610
    • /
    • 2023
  • The nitrogen reduction reaction (NRR), which produces NH3 by reducing N2 under ambient conditions, is attracting attention as a promising technology that can reduce energy consumption in industrial processes. We investigated the adsorption behaviors at various active sites on the Ni (100) surface, which is widely used among catalytic metal surfaces capable of adsorbing and activating N2, based on density-functional theory calculations. We also investigated two N2 adsorption structures, so-called end-on and side-on structures. We find that for the end-on case, N2 is adsorbed on a top site, and the reaction proceeded in a distal pathway, while for the side-on case, N2 is adsorbed on a bridge site, and the reaction proceeded with enzymatic pathway. Finally, this study provides insight into the adsorption of metal catalyst surfaces for the NRR reactions based on the calculated Gibbs free energy profiles of the thermodynamically most favorable pathways.

Effect of Promoter with Ru and Pd on Hydrogen Production over Ni/CeO2-ZrO2 Catalyst in Steam Reforming of Methane (메탄의 수증기 개질 반응에서 Ni/CeO2-ZrO2 촉매의 수소 생산에 대한 Ru 및 Pd의 조촉매 효과)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.134-139
    • /
    • 2024
  • In the steam reforming of methane reactions, the effect of adding noble metals Ru and Pd to a Ni-based catalyst as promoters was analyzed in terms of catalytic activity and hydrogen production. The synthesized catalysts were coated on the surface of a honeycomb-structured metal monolith to perform steam methane reforming reactions. The catalysts were characterized by XRD, TPR, and SEM, and after the reforming reaction, the gas composition was analyzed by GC to measure methane conversion, hydrogen yield, and CO selectivity. The addition of 0.5 wt% Ru improved the reduction properties of the Ni catalyst and exhibited enhanced catalytic activity with a methane conversion of 99.91%. In addition, reaction characteristics were analyzed according to various process conditions. Methane conversion of over 90% and hydrogen yield of more than 3.3 were achieved at a reaction temperature of 800 ℃, a gas hourly space velocity (GHSV) of less than 10000 h-1, and a ratio of H2O to CH4 (S/C) higher than 3.

Acid Property and Catalytic Activity on Mordenites Treated by Hydrochloric Acid and Hydrofluoric Acid (염산 및 불산처리 모더나이트의 산특성과 촉매활성)

  • Han, Young-Taek;Ha, Baik-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 1991
  • A series of samples having different $SiO_2/Al_2O_3$ ratio were prepared by treating hydrogen mordenites with boiling hydrochloric acid and with hydrofluoric acid. The acidities of these samples were measured by TPD of $NH_3$ and by pyridine adsorption using IR, and the catalytic activities and selectivities of isomerization were measured for the reaction of ortho-xylene. For the samples treated by boiling hydrochloric acid, the acidities decreased with the increasing $SiO_2/Al_2O_3$ ratio caused by the extraction of framework aluminum. The sample having the $SiO_2/Al_2O_3$ ratio or 22 showed better activity than the others. For the samples treated by hydrofluoric acid, the content of chemically binding fluorine increased with the increasing contact time of hydrofluoric acid solution. The catalytic activities decreased with the hydrofluoric acid treatment due to the decreased acid sites resulted from the extraction of aluminum and silicon as well as the hydroxyl group replacement by the fluoride ion. The slightly increasing catalytic activities, however, came from the newly created acid sites, due to the removal of surface silicon, having enhanced by the inductive effect of binding fluorin with further acid treatment.

  • PDF

Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane (메탄의 부분산화에 의한 메탄올 및 포름알데히드의 합성)

  • Hahm, Hyun-Sik;Shin, Ki-Seok;Kim, Song-Hyoung;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Methanol and formaldehyde were produced directly by the partial oxidation of methane. The catalysts used were mixed oxides of late-transition metals, such as Mn, Fe, Co, Ni and Cu. The reaction was carried out at $450^{\circ}C$, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by XRD, TPD and BET apparatus. Of the catalysts, A-Mn0.2-6, which contains 0.2 mole of Mn and calcined at $600^{\circ}C$, showed the best catalytic activity: 3.7% methane conversion, and 30 and 28% methanol and formaldehyde selectivities, respectively. The catalytic activity was changed with the content of Mn and the calcination temperature. Catalytic activity increased with the specific surface areas of the catalysts. With XRD, it was found that the structure of the catalysts are changed with calcination temperature. Through $O_2-TPD$ experiment, it was found that the catalysts showing good catalytic activity showed $O_2$ desorption peak around $800^{\circ}C$.

Catalytic Effects and Characteristics of Ni-based Catalysts Supported on TiO2-SiO2 Xerogel

  • Jeong, Jong-Woo;Park, Jong-Hui;Choi, Sung-Woo;Lee, Kyung-Hee;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2288-2292
    • /
    • 2007
  • The catalytic activities of nickel-based catalysts were estimated for oxidizing acetaldehyde of VOCs exhausted from industrial facilities. The catalysts were prepared by sol-gel methods of SiO2 and SiO2-TiO2 as a xerogel followed by impregnating Al2O3 powder with the nickel nitrate precursor. The crystalline structure and catalytic properties for the catalysts were investigated by use of BET surface area, X-ray diffraction (XRD), Xray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) techniques. These results show that nickel oxide is transformed to NiAl2O4 spinel structure at the calcination temperature of 400 °C in response to the steps with after- and co-impregnation of Al2O3 powder in sol-gel process. The NiAl2O4 could suppress the oxidation reaction of acetaldehyde by catalysts. The NiO is better dispersed on SiO2-TiO2/Al2O3 support than SiO2/Al2O3 and SiO2-TiO2-Al2O3 supports. From the testing results of catalytic activities for oxidation of acetaldehyde, Catalysts showed a big difference in conversion efficiencies with the way of the preparation of catalysts and the loading weight of nickel. The catalyst of 8 wt.% Ni/TiO2-SiO2/Al2O3 showed the best conversion efficiency on acetaldehyde oxidation with 100% conversion efficiency at 350 °C.

Preparation of Cu and Mn Bimetallic Catalyst Based on Co-Precipitation Method for Removal of Ethyl Acetate (아세트산 에틸 제거를 위한 공침법 기반의 Cu 및 Mn 이종금속 촉매의 제조)

  • Kim, Min Jae;Yoon, Jo Hee;Jeong, Jae-Min;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.466-470
    • /
    • 2022
  • The catalytic thermal oxidizer process has recently attracted considerable attention for the oxidation and decomposition of volatile organic compounds at low temperatures (< 450 ℃) with high efficiency (> 95%). Although many noble metal catalytic materials are well established, they are expensive and hazardous. Herein, highly active and low-cost Cu-Mn bimetallic catalysts were prepared using a simple and facile synthesis method involving the co-precipitation of Cu and Mn precursors. The synthesis of the catalyst was optimized by controlling the composition ratio of Cu and Mn. The optimized catalyst exhibited a large surface area of 230.8 m2/g with a mesoporous structure. To demonstrate the catalytic performance, the Cu-Mn catalyst was tested for the oxidation reaction of ethyl acetate, showing a high conversion efficiency of 100% at a low temperature of 250 ℃.

Revised Crackling Core Model Accounting for Fragmentation Effect and Variable Grain Conversion Time : Application to UO2 Sphere Oxidation (파편화 효과와 결정립 가변 전환시간을 고려한 Crackling Core Model의 개선 : UO2 구형 입자의 산화거동으로의 적용)

  • Lee, Ju Ho;Cho, Yung-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.411-420
    • /
    • 2018
  • This study presents a revised crackling core model for the description of $UO_2$ sphere oxidation in air atmosphere. For close reproduction of the sigmoid behavior exhibited in $UO_2$ to $U_3O_8$ conversion, the fragmentation effect contributing to the increased reactive surface area and the concept of variable grain conversion time were considered in the model development. Under the assumptions of two-step successive reaction of $UO_2{\rightarrow}U_3O_7{\rightarrow}U_3O_8$ and final grain conversion time equivalent to ten times the initial grain conversion time, the revised model showed good agreement with the experimental data measured at 599 - 674 K and a lowest deviation when compared with Nucleation and Growth model and AutoCatalytic Reaction model. The evaluated activation energy at 100% conversion to $U_3O_8$, $57.6kJ{\cdot}mol^{-1}$, was found to be closer to the experimentally extrapolated value than to the value determined in AutoCatalytic Reaction model, $48.6kJ{\cdot}mol^{-1}$.

Synthesis of Mesoporous SAPO-34 Catalyst Using Chitosan and Its DTO Reaction (키토산을 이용한 메조 세공 SAPO-34 촉매의 합성 및 DTO 반응)

  • Yoon, Young-Chan;Song, Kang;Lim, Jeong-Hyeon;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.305-311
    • /
    • 2021
  • Effects of chitosan as a mesopore directing agent of SAPO-34 catalysts were investigated to improve the catalytic lifetime in DTO reaction. The synthesized catalysts were characterized by XRD, SEM, N2 adsorption-desorption isotherm and NH3-temperature programmed desorption (TPD). The modified SAPO-34 catalysts prepared by varying the added amount of chitosan showed the same cubic morphology and chabazite structure as the conventional SAPO-34 catalyst. As the added amount of chitosan increased to 3 wt%, the surface area, mesopore volume and concentration of weak acid sites of modified SAPO-34 catalysts increased. The modified SAPO-34 catalysts showed enhanced catalytic lifetime and high selectivity for light olefins in the DTO reaction. In particular, the SAPO-CHI 3 catalyst (3 wt%) exhibited the longest catalytic lifetime than that of the conventional SAPO-34. Therefore, it was confirmed that chitosan was a suitable material as a mesopore directing agent to delay deactivation of the SAPO-34 catalyst.

Hydrogen Production from Ammonia Decomposition over Transition Metal Carbides (전이금속 카바이드를 이용한 암모니아 분해 반응으로부터 수소생산)

  • CHOI, EUI-JI;CHOI, JEONG-GIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • The preparation and catalytic activities of various transition metal carbide crystallites (VC, MoC, WC) were examined in this study. In particular, the effect of different kinds of transition metal crystallites were scrutinized on the ammonia decomposition reaction. The experimental results showed that BET surface areas ranged from $8.3m^2/g$ to $36.3m^2/g$ and oxygen uptake values varied from $9.1{\mu}mol/g$ to $25.4{\mu}mol/g$. Amongst prepared transition metal carbide crystallites, tungsten compounds (WC) were observed to be most active for ammonia decomposition reaction. The main reason for these results were considered to be related to the extent of electronegativity between these materials. Most of transition metal carbide crystallites were exceeded by Pt/C crystallite. However, the steady state reactivities for some of transition metal carbide crystallites (WC) were comparable to or even higher than that determined for the Pt/C crystallite.

Epoxidation of Styrene using Nanosized γ-Al2O3/NiO Heterogeneous Catalyst Derived from the P123 Surfactant

  • Son, Boyoung;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.423-426
    • /
    • 2012
  • $Al_2O_3$/NiO powder was obtained through hydrolysis-condensation reactions and thermal treatments. An organic additive, triblock copolymer surfactant P123, was added to the starting materials to control the surface area and morphology. The synthesized powder was characterized by X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM) and a Brunner-Emmett-Teller surface analysis (BET). The heterogeneous catalytic activity of this powder was applied to an epoxidation reaction of styrene and was monitored using a gas chromatograph with mass spectrophotometry (GC/MS).