Browse > Article
http://dx.doi.org/10.14478/ace.2022.1075

Preparation of Cu and Mn Bimetallic Catalyst Based on Co-Precipitation Method for Removal of Ethyl Acetate  

Kim, Min Jae (Department of Chemical Engineering, Kangwon National University)
Yoon, Jo Hee (Department of Chemical Engineering, Kangwon National University)
Jeong, Jae-Min (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.5, 2022 , pp. 466-470 More about this Journal
Abstract
The catalytic thermal oxidizer process has recently attracted considerable attention for the oxidation and decomposition of volatile organic compounds at low temperatures (< 450 ℃) with high efficiency (> 95%). Although many noble metal catalytic materials are well established, they are expensive and hazardous. Herein, highly active and low-cost Cu-Mn bimetallic catalysts were prepared using a simple and facile synthesis method involving the co-precipitation of Cu and Mn precursors. The synthesis of the catalyst was optimized by controlling the composition ratio of Cu and Mn. The optimized catalyst exhibited a large surface area of 230.8 m2/g with a mesoporous structure. To demonstrate the catalytic performance, the Cu-Mn catalyst was tested for the oxidation reaction of ethyl acetate, showing a high conversion efficiency of 100% at a low temperature of 250 ℃.
Keywords
VOCs; Copper; Manganese; Catalyst; Catalytic thermal oxidizer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. D. Napruszewska, A. Michalik, A. Walczyk, D. Duraczyeska, R. Dula, W. Rojek, L. Litynska-Dobrzynska, K. Bahranowski, and E. M. Sewicka, Composites of laponite and Cu-Mn hopcalite-related mixed oxides prepared from inverse microemulsions as catalysts for total oxidation of toluene, Materials, 11, 1365-1379 (2018).   DOI
2 T. Biemelt, K. Wegner, J. Teichert, and S. Kaskel, Microemulsion flame pyrolysis for hopcalite nanoparticle synthesis: a new concept for catalyst preparation, Chem. Commun., 15, 5872-5875 (2015).
3 S. Said, S. Mikhail, and M. Riad, Recent processes for the production of alumina nano-particles, Mater. Sci. Technol., 3, 344-363 (2020).
4 M. Bannai, A. Houkabe, M. Furukawa, T. Kashiwagi, A. Akisawa, T. Yoshida, and H. Yamada, Development of efficiency-enhanced cogeneration system utilizing high-temperature exaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases, Appl. Energy, 83, 929-942 (2006).   DOI
5 H. Bai, Z. Wang, J. Zhang, J. Wu, Y. Yue, Q. Liu, and G. Qian, Synthesis of a perovskite-type catalyst from Cr electroplating sludge for effective catalytic oxidization of VOC, J. Environ. Manage., 294, 113025-113031 (2021).   DOI
6 S. Dey and N. S. Mehta, To optimized various parameters of hopcalite catalysts in the synthetic processes for low temperature CO oxidation, Appl. Energy Combust. Sci., 6, 100031-100042 (2021).
7 J. R. Hart, Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from catalytic and thermal oxidizers burning dilute chlorinated vapors, Chemosphere, 54, 1539-1547 (2004).   DOI
8 M. Luo, Y. Cheng, X. Peng, and W. Pan, Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene, Chem. Eng. J., 369, 758-765 (2019).   DOI
9 S. Dey and G. C. Dhal, Deactivation and regeneration of hopcalite catalyst for carbon monoxide oxidation: a review, Mater. Today Chem., 14, 100180-100191 (2019).   DOI
10 S. Dey and G. C. Dhal, Synthesis of hopcalite catalyst by various methods for improved catalytic conversion of carbon monoxide, Mater. Sci. Technol., 3, 377-389 (2020).
11 Y. H. Yap, M. S. W. Lim, Z. Y. Lee, K. C. Lai, M. A. Jamaal, F. H. Wong, H. K. Ng, S. S. Lim, and T. J. Tiong, Effects of sonication on co-precipitation synthesis and activity of copper manganese oxide catalyst to remove methane and Sulphur dioxide gases, Ultrason. Sonochem., 40, 57-67 (2018).   DOI
12 M. S. Lee, S.-I. Kim, M. Lee, B. Ye, T. Kim, H.-D. Kim, J. W. Lee, and D. H. Lee, Effect of catalyst crystallinity on V-based selective catalytic reduction with ammonia, Nanomaterials, 11, 1452-1463 (2021).   DOI
13 S. Dey and N. S. Mehta, Influence the performances of hopcalite catalysts by the addition of gold nanoparticle for low temperature CO oxidation, Cleaner Eng. Technol., 4, 100171-100181 (2021).   DOI
14 J. Kim, Y. H. Min, N. Lee, E. Cho, K. Y. Kim, G. Jeong, S. K. Moon, M. Joo, D. B. Kim, J. Kim, S.-Y. Kim, Y. Kim, J. Oh, and S. Sato, In situ spectroscopic and computational studies on a MnO2-CuO catalyst for use in volatile organic compound decomposition, ACS Omega, 2, 7424-7432 (2017).   DOI
15 H. Lin, D. Chen, H. Liu, X. Zou, and T. Chen, Effect of MnO2 crystalline structure on the catalytic oxidation of formaldehyde, Aerosol. Air Qual. Res., 17, 1011-1020 (2017).   DOI
16 Y. Xu, Z. Qu, Y. Ren, and C. Dong, Enhancement of toluene oxidation performance over Cu-Mn composite oxides by regulating oxygen vacancy, Appl. Surf. Sci., 560 149983-149994 (2021).   DOI