• 제목/요약/키워드: Catalyst electrode

검색결과 300건 처리시간 0.024초

전사 인쇄에 의한 3D와 다층의 Pt 전극의 CO가스 흡착 (CO Adsorption on Three-Dimensional and Multilayered Platinum Electrode Prepared through Transfer Printing)

  • 정윤서;최유정;신정희;정영훈;박종후;윤대호;조정호
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.232-236
    • /
    • 2020
  • Three-dimensional (3D) multilayered Pt electrodes were fabricated to develop a porous electrode using a pattern-transfer printing process. The Pt thin films were deposited using a transferred sputtering pattern having a 250 nm line width on the substrate, and the uniform line patterns were efficiently transferred using our proposed method. Temperature-programmed desorption (TPD) analyses were used to evaluate the porosity of the electrodes. It was possible to distinguish between two resolved maxima at 168 and 227 ℃, which could be described in terms of desorption reactions on the Pt (111) planes. The results of the TPD analysis of the 3D and multilayered Pt electrodes prepared through transfer printing were compared to those of an electrode fabricated through screen printing using a commercial Pt-carbon paste commonly used as porous electrodes. It was confirmed that the 3D multilayered electrodes exhibited a desorption concentration approximately 100 times higher than that of the Pt-carbon composite electrode, and the desorption concentration increased by approximately 0.02 mg/mol per layer. The 3D multilayered electrode effectively functions as a porous electrode and a catalyst.

삼상 계면대에서 활성 탄소섬유로 된 연료전지 전극의 흡착 특성 (Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution)

  • 박수진;정효진;나창운
    • 폴리머
    • /
    • 제27권1호
    • /
    • pp.46-51
    • /
    • 2003
  • 본 연구에서는 적절한 반응 삼상 계면대를 형성하기 위해서 카본블랙과 활성 탄소섬유를 혼합하여 연료전지의 전극을 제조하고, 전극 삼상 계면대의 변화를 고찰하였다. 활성 탄소섬유의 직량비에 따른 백금의 담지량과 백금 입자크기는 각각 원자흡광분석기와 X-선 회절기를 사용하여 분석하였다. 또한 비표면적( $S_{BET}$), 미세기공도 및 기공크기분포(PSD)를 포함하는 전극의 기공구조는 BET를 이용하연 고찰하였으며, 주사전자현미경을 이용하여 전극 삼상 계면대의 형태를 관찰하였다. 실험 결과, 백금의 담지율은 활성 탄소섬유의 첨가에는 큰 영향을 받지 않았다. 반면에, 전극 삼상 계면대는 30% 활성 탄소섬유를 카본블랙에 첨가하였을 경우 더 향상되었는데 이는 촉매의 활성점을 제공하는 미세기공 영역이 증가하였기 때문으로 사료된다.다.

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • 전기화학회지
    • /
    • 제4권4호
    • /
    • pp.172-175
    • /
    • 2001
  • 마그네트론 스퍼터링 방법에 의하여 Nanophase 촉매층을 형성하여 Direct Methanol Fuel Cell(DMFC)에 적용하였다. 일반적인 박막 증착 방법보다 높은 압력 (Ar/He혼합기체)에서 금속 Target과 탄소 Target을 동시에 스퍼터링하여 내피온막 위에 직접 코팅함으로써 기공성 있는 PtRu혹은 Pt및 탄소입자를 포함한 새로운 구조의 촉매층을 형성하였다. 본 방법에 의하여 $1.5mg/cm^2$의 PtRu(Anode) 및 $1mg/cm^2$ Pt(Cathode) 로딩으로 2M Methanol, 1 Bar공기, $80^{\circ}C$조건에서 $45mW/cm^2$의 출력을 얻을 수 있었으며, 이는 기존의 상용방법에 의하여 제조된 전극보다 같은 조건에서 $30\%$의 성능향상을 제시한 것이다. 이는 Nanophase촉매층 구조로 인하여 초미세 분말을 적용하였고, 많은 량의 원자들이 입계에 배열하게 됨으로써 촉매반응을 원활하게 하고,연료의 공급을 효율적으로 해준 것에 기안한 것으로 판단된다. 그러므로, 본 연구의 결과를 응용할 경우 DMFC를 휴대용 전자기기에 적용함에 있어서 성능향상 및 가격경쟁력 확보에 도움을 줄 것으로 기대된다.

PAFC용 합금 촉매 제조 (Manufacture of Pt-transition Metal Alloy Catalyst for PAFC)

  • 김영우;이주성
    • 공업화학
    • /
    • 제4권4호
    • /
    • pp.692-700
    • /
    • 1993
  • 카본 담체에 백금과 전이금속과의 합금 촉매를 제조하여 촉매의 부식성, 촉매능 및 단전지에서의 전극성능을 전기화학적으로 비교 검토하였다. 그리고 합금촉매의 분석은 XRD로 확인하였다. 본 연구에서 제조된 여러 가지 백금 합금 촉매 중 Pt-Mo/carbon, Pt-Fe-Co/carbon 및 Pt-Fe/carbon 촉매가 보다 우수한 산소 환원 전류밀도를 나타내었으나 Pt-Mo/carbon 촉매의 경우 초기 전극전류의 대부분이 촉매의 부식에 의한 전류임을 확인할 수 있었다. Pt/carbon촉매를 사용하였을 경우 나타난 전극의 전류밀도는 $120mA/cm^2$이었으나 Pt-Fe-Co/carbon 의 경우는 $200mA/cm^2$으로 순수 백금촉매보다 우수한 전극성능을 나타내었다.

  • PDF

자동차용 고분자전해질형연료전지 스택에서의 막-전극접합체 설계인자가 저온시동에 미치는 영향성 연구 (Analyzing the Effects of MEA Designs on Cold Start Behaviors of Automotive Polymer Electrolyte Fuel Cell Stacks)

  • 곽건희;고요한;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.8-18
    • /
    • 2012
  • This paper presents a three-dimensional, transient cold-start polymer electrolyte fuel cell (PEFC) model to numerically evaluate the effects of membrane electrode assembly (MEA) design and cell location in a PEFC stack on PEFC cold start behaviors. The cold-start simulations show that the end cell experiences significant heat loss to the sub-freezing ambient and thus finally cold-start failure due to considerable ice filling in the cathode catalyst layer. On the other hand, the middle cells in the stack successfully start from $-30^{\circ}C$ sub-freezing temperature due to rapid cell temperature rise owing to the efficient use of waste heat generated during the cold-start. In addition, the simulation results clearly indicate that the cathode catalyst layer (CL) composition and thickness have an substantial influence on PEFC cold-start behaviors while membrane thickness has limited effect mainly due to inefficient water absorption and transport capability at subzero temperatures.

새로운 촉매 코팅법을 이용한 직접 개미산 연료전지의 성능 분석 (Performance Analysis of The Direct Formic Acid Fuel Cell using A New Catalysis Coating Method)

  • 권용재;권병완;김진수;김이영;정원석;한종희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2008
  • The cell performance of direct formic acid fuel cell (DFAFC) having catalysts coated by electrospray was analyzed. Pd catalyst was used for the anode electrode and Pd catalyst loading amount and formic acid feed rate dependances of fuel cell performance were evaluated. When loading amount of Pd is in between 3mg/$cm^2$ and 7mg/$cm^2$ and formic acid feed rate is 5ml/min., 3mg/$cm^2$ sample showed better potential at 129 mA/$cm^2$ and power density due to difference in mass transfer limitation. However, when the feed rate is greater than 10ml/min., the opposite tendency was observed between 3mg/$cm^2$ and 7mg/$cm^2$ samples. The result was attributed to improvement in electrochemical reaction of the Pd. Based on the above results, In DFAFC including Pd catalyst that was coated by electrospray, 0.537V as the maximum potential at 129 mA/$cm^2$ was attained.

  • PDF

복합촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구 (A study of decomposition of sulfur oxides using Composite catalyst by plasma reactions)

  • 우인성;황명환;김다영;김관중;김성태;박화용
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 춘계학술대회
    • /
    • pp.655-668
    • /
    • 2013
  • In this study, a combination of the plasma discharge in the reactor by the reaction surface discharge reactor complex catalytic reactor and air pollutants, hazardous gas SOx, change in frequency, residence time, and the thickness of the electrode, the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. 20W power consumption 10kHz frequency decomposition removal rate of 99% in the decomposition of sulfur oxides removal experiment that is attached to the titanium dioxide catalyst reactor experimental results than if you had more than 5% increase. If added to methane gas was added, the removal efficiency increased decomposition, the oxygen concentration increased with increasing degradation rate in the case of adding carbon dioxide decreased.

  • PDF

Preparation of Platinum catalysts for PEM Fuel cells

  • Sasikumar G.;Ryu H.
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2003년도 연료전지심포지움 2003논문집
    • /
    • pp.189-192
    • /
    • 2003
  • In this work, we have prepared platinum catalyst by various methods, investigated fuel cell performance and compared performance with commercially available $20\%$ Pt supported on carbon (Pt/C) catalyst. We have found that Pt/C prepared by reduction of chloroplatinic acid in mixed solvent (water+ethylene glycol) gives better performance compared to that produced by reduction of aqueous chloroplatinic acid, which can be attributed to smaller catalyst particle size and lower agglomeration in the mixed solvent. We have also prepared a novel platinum electrocatalyst by depositing platinum on Nafion coated carbon powder and it shows great promise. The performance of electrode prepared using $20\%Pt$ onn Nafion coated carbon mixed with Pt/C was found to be higher than the performance of electrodes using commercially available $20\%$ Pt/C, up to a current density of about $1100mA/cm^2$. The cell voltages obtained were respectively 621 and 603mV, at a current density of: $1000mA/cm^2$, in a single cell using $0.25mgPt/cm^2$ and Nafion 10035 membrane at $80^{\circ}C$ using hydrogen/oxygen reactants at 1 atm pressure.

  • PDF

A Design Technology of Ceramic Tube for High Efficiency Ozone

  • Cho, Kook-Hee;Kim, Young-Bae;Lee, Dong-Hoon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권3호
    • /
    • pp.77-80
    • /
    • 2003
  • An innovative ozonizer has been developed using a high frequency, surface discharge and a high purity Ti-Si-AI ceramic catalyst as a dielectric component. Using a type of thin film, a thin cylindrical compound ceramic catalyst layer was adhered to the outside surface of its inner electrode. An alternating current (AC) exciting voltage with frequencies from 0.6 KHz to 1.0 KHz and peak-to-peak voltages of 4-6 ㎸ was applied between the electrodes to produce a stable high-frequency silent discharge. A substantial reduction of the exciting voltage was also enabled by means of a thin Ti-Si-Al ceramic catalyst tube. As a result, the ozonizer can effortlessly obtain the required ozone concentration (50-60 g/$m^2$ for oxygen) and high ozone efficiency consumption power (180 g/kWh for oxygen) with-out the assistance of any particular methods. For purposes of this experiment, oxygen gas temperature was set at 2$0^{\circ}C$, with an inner reactor pressure of 1.6 atm at 600 Hz and a flow rate of 2 l/min.

산성용액에서 전해액 조성에 따른 아연공기 이차전지의 성능변화 (Characterization for Performance of Zn-Air Recharegeable Batteries on Different Composition in Acidic Electrolyte)

  • 대관하;노립신;심중표;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.401-409
    • /
    • 2021
  • The combination of different concentrations of ZnSO4 in acidic solution as electrolyte in Zn-air batteries was investigated by Zn symmetrical cell test, half-cell and full cell tests. Using 1 M ZnSO4 + 0.05 M H2SO4 as electrolyte and MnO2 as air cathode catalyst with Zn foil anode, this combination had a satisfactory performance with balance of electrochemical activity and stability. Its electrochemical activity was matched to or even better than the PtRu catalyst in different current density. And its cycle life was improved (more than 100 cycles stable) by suppressing the growth of zinc dendrites on anode obviously. This electrolyte overcame the shortcomings of alkaline electrolyte that are easy to react with CO2 in the air, severely growth of Zn dendrites caused by uneven plating/stripping of Zn.