• Title/Summary/Keyword: Catalyst dispersion

Search Result 163, Processing Time 0.041 seconds

Hydrogen Production from Methane Reforming Reactions over Ni/MgO Catalyst

  • Wen Sheng Dong;No, Hyeon Seok;Zhong Wen Liu;Jeon, Gi Won;Park, Sang Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1323-1327
    • /
    • 2001
  • The catalyst Ni/MgO (Ni : 15 wt%) has been applied to methane reforming reactions, such as steam reforming of methane (SRM), partial oxidation of methane (POM), and oxy-steam reforming of methane (OSRM). It showed high activity and good stability in all the reforming reactions. Especially, it exhibited stable catalytic performance even in stoichiometric SRM (H2O/CH4 = 1). From TPR and H2 pulse chemisorption results, a strong interaction between NiO and MgO results in a high dispersion of Ni crystallite. Pulse reaction results revealed that both CH4 and O2 are activated on the surface of metallic Ni over the catalyst, and then surface carbon species react with adsorbed oxygen to produce CO.

The Characteristics of HI Decomposition using Pt/Al2O3 Catalyst Heat Treated in Air and Hydrogen Atmosphere (공기 및 수소 분위기에서 열처리 된 Pt/Al2O3 촉매의 HI분해반응 특성)

  • Park, Eun Jung;Ko, Yun Ki;Park, Chu Sik;Kim, Chang Hee;Kang, Kyoung Soo;Cho, Won Chul;Jeong, Seong Uk;Bae, Ki Kwang;Kim, Young Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • In HI decomposition, $Pt/Al_2O_3$ has been studied by several researchers. However, after HI decomposition, it could be seen that metal dispersion of $Pt/Al_2O_3$ was greatly decreased. This reason was expected of platinum loss and sintering, which platinum was aggregated. Also, this decrease of metal dispersion caused catalytic deactivation. This study was conducted to find the condition to minimize platinum sintering and loss. In particular, heat treatment atmosphere and temperature were examined to improve the activity of HI decomposition reaction. First of all, although $Pt/Al_2O_3$ treated in hydrogen atmosphere had low platinum dispersion between 13 and 18%, it was shown to suitable platinum form that played an important role in improving HI decomposition reaction. Oxygen in the air atmosphere made $Pt/Al_2O_3$ have high platinum dispersion even 61.52% at $500^{\circ}C$. Therefore, in order to get high platinum dispersion and suitable platinum form in HI decomposition reaction, air heat treatment at $500^{\circ}C$ was needed to add before hydrogen heat treatment. In case of 5A3H, it had 51.13% platinum dispersion and improved HI decomposition reaction activity. Also, after HI decomposition reaction it had considerable platinum dispersion of 23.89%.

Effect of NCO Index on the Particle Size of Polycarbonate Diol-based Polyurethane Dispersion

  • Kim, Dong-Eun;Kang, Seung-Oh;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • The effect of the isocyanate index (NCO index) on the particle size and particle size distribution of a waterborne polyurethane dispersion (WPUD) with polycarbonate-diol was determined. The WPUDs were prepared using a conventional acetone process with polycarbonate-polyol (Mn = 2028), 4,4'-methylenebis(cyclohexyl isocyanate) (H12MDI), 2,2-bis(hydroxymethyl) propionic acid (DMPA), and dibutyltin dilaurate catalyst. At NCO index values below 1.5, the number average particle diameter of the WPUDs significantly increased with the NCO index, whereas the particle diameter slightly varied at higher NCO indexes. The dependency of the WPUD viscosity on the NCO index exhibited similar behavior to that of the particle size. The relative values of the full width at half maximum of the WPUD particle distribution curves at various NCO indexes were not influenced by the NCO index.

Titanium Isopropoxide (TTIP) Treatment Strategy for V2O5-WO3/TiO2 SCR Catalysts with a Wide Operating Temperature (넓은 작동 온도범위를 가지는 V2O5-WO3/TiO2 SCR 촉매 개발을 위한 티타늄 이소프로폭사이드(TTIP) 활용 전략)

  • Jaeho Lee;Gwang-hun Cho;Geumyeon Lee;Changyong Yim;Young-Sei Lee;Taewook Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.357-364
    • /
    • 2023
  • Selective catalytic reduction (SCR) is the most effective method for reducing nitrogen oxide emissions, but the operating temperature range of V2O5-WO3/TiO2 catalysts is narrow (300~400℃). In this study, a new catalyst with an operating temperature range of 200~450℃ was developed. The catalyst poison, ammonium bisulfate, generated during the SCR process can be removed by heating above 350℃. To increase the number of active sites and promote the dispersion of active materials, titanium isopropoxide (TTIP) treatment was performed on the TiO2 support with various TTIP/TiO2 mass ratios. Among them, the 5 wt% TTIP loaded catalyst showed improved performance due to higher thermal stability caused by high W dispersion and the formation of V5+. In addition, the 5 wt% TTIP-loaded catalyst prepared by a one-step co-precipitation method showed greater V-OH and W-OH dispersion and enhanced interactions in contrast to conventional methods, resulting in higher catalytic activity at lower temperatures. This review article aims to provide an accessible explanation for researchers investigating how to improve the surface properties of TiO2 catalysts using TTIP.

Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction (Ce 첨가에 따른 저온수성가스전이반응용 Cu/Zn 촉매의 활성 연구)

  • Byun, Chang Ki;Im, Hyo Bin;Park, Jihye;Baek, Jeonghun;Jeong, Jeongmin;Yoon, Wang Ria;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2015
  • In order to investigate the effect of cerium oxide addition, Cu-ZnO-CeO2 catalysts were prepared using co-precipitation method for water gas shift (WGS) reaction. A series of Cu-ZnO-CeO2 catalyst with fixed Cu Content (50 wt%, calculated as CuO) and a given ceria content (e.g., 0, 5, 10, 20, 30, 40 wt%, calculated as CeO2) were tested for catalytic activity at a GHSV of 95,541 h-1, and a temperature range of 200 to 400 ℃. Cu-ZnO-CeO2 catalysts were characterized by using BET, SEM, XRD, H2-TPR, and XPS analysis. Varying composition of Cu-ZnO-CeO2 catlysts led the difference characteristics such as Cu dispersion, and binding energy. The optimum 10 wt% doping of cerium facilitated catalyst reduction at lower temperature and improved the catalyst performance greatly in terms of CO conversion. Cerium oxide added catalyst showed enhanced activities at higher temperature when it compared with the catalyst without cerium oxide. Consequently, ceria addition of optimal composition leads to enhanced catalytic activity which is attributed to enhanced Cu dispersion, lower binding energy, and hindered Cu metal agglomeration.

V2O5WO3/TiO2 Catalyst Prepared on Nanodispersed TiO2 for NH3-SCR: Relationship between D ispersed Particle Size of TiO2 and Maximum Decomposition Temperature of NOx (NH3-SCR용 나노분산 TiO2 담체상에 제조된 V2O5WO3/TiO2 촉매: TiO2 분산입도와 NOx 최대 분해온도와의 상관성)

  • Min Chae, Seo;Se-Min, Ban;Jae Gu, Heo;Yong Sik, Chu;Kyung-Seok, Moon;Dae-Sung, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.496-507
    • /
    • 2022
  • For the selective catalytic reduction of NOx with ammonia (NH3-SCR), a V2O5WO3/TiO2 (VW/nTi) catalyst was prepared using V2O5 and WO3 on a nanodispersed TiO2 (nTi) support by simple impregnation process. The nTi support was dispersed for 0~3 hrs under controlled bead-milling in ethanol. The average particle size (D50) of nTi was reduced from 582 nm to 93 nm depending on the milling time. The NOx activity of these catalysts with maximum temperature shift was influenced by the dispersion of the TiO2. For the V0.5W2/nTi-0h catalyst, prepared with 582 nm nTi-0h before milling, the decomposition temperature with over 94 % NOx conversion had a narrow temperature window, within the range of 365-391 ℃. Similarly, the V0.5W2/nTi-2h catalyst, prepared with 107 nm nTi-2h bead-milled for 2hrs, showed a broad temperature window in the range of 358~450 ℃. However, the V0.5W2/Ti catalyst (D50 = 2.4 ㎛, aqueous, without milling) was observed at 325-385 ℃. Our results could pave the way for the production of effective NOx decomposition catalysts with a higher temperature range. This approach is also better at facilitating the dispersion on the support material. NH3-TPD, H2-TPR, FT-IR, and XPS were used to investigate the role of nTi in the DeNOx catalyst.

Ligand Effect in Recycled CNT-Pd Heterogeneous Catalyst for Decarboxylative Coupling Reactions

  • Kim, Ji Dang;Pyo, Ayoung;Park, Kyungho;Kim, Gwui Cheol;Lee, Sunwoo;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2099-2104
    • /
    • 2013
  • We present here an efficient and simple method for preparation of highly active Pd heterogeneous catalyst (CNT-Pd), specifically by reaction of dichlorobis(triphenylphosphine)palladium ($Pd(PPh_3)_2Cl_2$) with thiolated carbon nanotubes (CNTs). The as-prepared CNT-Pd catalysts demonstrated an excellent catalytic activity for the carbon-carbon (C-C) cross-coupling reactions (i.e. Suzuki, Stille, and decarboxylative coupling reactions) under mild conditions. The CNT-Pd catalyst could easily be removed from the reaction mixture; additionally, in the decarboxylative coupling of iodobenzene and phenylpropiolic acid, it showed a six-times recyclability, with no loss of activity. Moreover, once its activity had decreased by repeated recycling, it could easily be reactivated by the addition of phosphine ligands. The remarkable recyclability of the decarboxylative coupling reaction is attributable to the high degree of dispersion of Pd catalysts in CNTs. Aggregation of the Pd catalysts is inhibited by their strong adhesion to the thiolated CNTs during the chemical reactions, thereby permitting their recycling.

Fabrication and Characterization of High-activity Pt/C Electrocatalysts for Oxygen Reduction

  • Lim, Bo-Rami;Kim, Joung-Woon;Hwang, Seung-Jun;Yoo, Sung-Jong;Cho, Eun-Ae;Lim, Tae-Hoon;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1577-1582
    • /
    • 2010
  • A 20 wt % Pt/C is fabricated and characterized for use as the cathode catalyst in a polymer electrolyte membrane fuel cell (PEMFC). By using the polyol method, the fabrication process is optimized by modifying the carbon addition sequence and precursor mixing conditions. The crystallographic structure, particle size, dispersion, and activity toward oxygen reduction of the as-prepared catalysts are compared with those of commercial Pt/C catalysts. The most effective catalyst is obtained by ultrasonic treatment of ethylene glycol-carbon mixture and immediate mixing of this mixture with a Pt precursor at the beginning of the synthesis. The catalyst exhibits very uniform particle size distribution without agglomeration. The mass activities of the as-prepared catalyst are 13.4 mA/$mg_{Pt}$ and 51.0 mA/$mg_{Pt}$ at 0.9 V and 0.85 V, respectively, which are about 1.7 times higher than those of commercial catalysts.

Preparation and Characterization of Ni-Co Bimetallic Catalyst for Methanation (메탄화 반응을 위한 Ni-Co 이원 금속 촉매의 제조와 특성 분석)

  • Yia, Jong-Heop;Kanga, Mi-Yeong;Kim, Woo-Young;Cho, Won-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.33-38
    • /
    • 2009
  • Synthetic natural gas was producd by the reaction of carbon monoxide and hydrogen via methanation. Ni-Co bimetallic catalyst supported on $Al_2O_3$ for methanation was prepared using deposition-precipitation method. For the comparison, Ni, Co monometallic catalyst was prepared using the same method. The prepared catalysts were characterized by TEM, XRD and TPR and applied to methanation reaction. The catalysts prepared using deposition-precipitation method showed the high metal dispersion. The activity of Ni-Co bimetallic catalyst was higher than that of Ni, Co monometallic catalyst. TPR measurements indicated that Ni-Co bimetallic catalyst had more active hydrogen species than Ni, Co monometallic catalyst due to the synergetic effect in the presence of Ni and Co.

  • PDF

Effect of Dispersed MoO3 Amount on Catalytic Activity of NiO-ZrO2 Modified with MoO3 for Acid Catalysis

  • Sohn, Jong-Rack;Lee, Sung-Gyu;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1623-1632
    • /
    • 2006
  • NiO supported on zirconia modified with $MoO_3$ for acid catalysis was prepared by drying powdered $Ni(OH)_2-Zr(OH)_4$ with ammonium heptamolybdate aqueous solution, followed by calcining in air at high temperature. The characterization of prepared catalysts was performed using FTIR, Raman, XRD, and DSC. $MoO_3$ equal to or less than 15 wt% was dispersed on the surface of catalyst as two-dimensional polymolybdate or monomolybdate, while for $MoO_3$ above 15 wt%, crystalline orthorhombic phase of $MoO_3$ was formed, showing that the critical dispersion capacity of $MoO_3$ on the surface of catalyst is 0.18 g/g NiO-$ZrO_2$ on the basis of XRD analysis. Acidity and catalytic activities for acid catalysis increased with the amount of dispersed $MoO_3$. The high acid strength and acidity was responsible for the Mo=O bond nature of the complex formed by the interaction between $MoO_3$ and $ZrO_2$. The catalytic activity for acid catalysis was correlated with the acidity of the catalysts measured by the ammonia chemisorption method.