Preparation and Characterization of Ni-Co Bimetallic Catalyst for Methanation

메탄화 반응을 위한 Ni-Co 이원 금속 촉매의 제조와 특성 분석

  • Yia, Jong-Heop (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kanga, Mi-Yeong (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kim, Woo-Young (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Cho, Won-Jun (Korea Gas Corporation)
  • 이종협 (서울대학교 화학생물공학부) ;
  • 강미영 (서울대학교 화학생물공학부) ;
  • 김우영 (서울대학교 화학생물공학부) ;
  • 조원준 (한국가스공사 DME 개발본부)
  • Published : 2009.10.30

Abstract

Synthetic natural gas was producd by the reaction of carbon monoxide and hydrogen via methanation. Ni-Co bimetallic catalyst supported on $Al_2O_3$ for methanation was prepared using deposition-precipitation method. For the comparison, Ni, Co monometallic catalyst was prepared using the same method. The prepared catalysts were characterized by TEM, XRD and TPR and applied to methanation reaction. The catalysts prepared using deposition-precipitation method showed the high metal dispersion. The activity of Ni-Co bimetallic catalyst was higher than that of Ni, Co monometallic catalyst. TPR measurements indicated that Ni-Co bimetallic catalyst had more active hydrogen species than Ni, Co monometallic catalyst due to the synergetic effect in the presence of Ni and Co.

일산화탄소, 수소와 같은 친환경 연료용 가스를 이용하여 메탄화 반응을 거쳐 합성 가스를 생성하였다. 이를 위한 촉매로 상용 알루미나에 담지된 Ni-Co 이원 금속을 증착침전법을 사용하여 제조하였으며 제조된 촉매의 촉매 활성 비교를 위하여 Ni, Co 단일 금속 촉매를 동일한 방법으로 제조하였다. 제조한 촉매를 TEM, XRD, TPR 분석을 실시하여 각각의 촉매 특성을 확인하였고 메탄화 반응을 진행하여 합성 가스 전환율을 측정하였다. 증착침전법으로 제조한 촉매의 경우, 금속 입자가 작은 크기로 분산된 것을 확인하였다. Ni, Co 두 금속이 담지된 이원 촉매는 Ni, Co가 각각 담지된 단일 금속 촉매에 비해 더욱 높은 활성을 나타내었으며 TPR 분석 결과, 이는 두 금속의 공존으로 인한 상호 작용을 통해 활성 수소를 보다 증가시켰기 때문으로 나타났다.

Keywords

References

  1. G.J. Stiegel, M. Ramezan "Hydrogen from coal gasification: An economical pathway to a sustainable energy future", International Journal of Coal Geology, 65, 173-190, (2006) https://doi.org/10.1016/j.coal.2005.05.002
  2. S.Z. Ozdogan, P.D. Gochis, J.L. Falconer "Carbon and crbon monoxide hydrogenation on nickel: support effects", Journal of catalysis, 83, 257-266, (1983) https://doi.org/10.1016/0021-9517(83)90053-2
  3. G. Ertl, H. Knozinger, J. Weitkamp Handbook of Heterogeneous Catalysis, Vol. 3, Eds. Wiley-VCH, Weinheim (1997)
  4. P.R. Wentrcek, B.J. Wood, H. Wise "The role of surface carbon in catalytic methanation", Journal of catalysis, 43, 363-366, (1976) https://doi.org/10.1016/0021-9517(76)90324-9
  5. M.B.I. Choudhury, S. Ahmed, M.A. Shalabi, T. Inui "Preferential methanation of CO in a syngas involving $CO_{2}$ at lower temperature range", Applied Catalysis A: General, 314, 47-53, (2006) https://doi.org/10.1016/j.apcata.2006.08.008
  6. S.H. Kim, S.-W. Nam, T.-H. Lim, H.-I. Lee "Effect of pretreatment on the activity of Ni catalyst for CO removal reaction by water–gas shift and methanation", Applied Catalysis B: Environmental, 81, 97-104, (2008) https://doi.org/10.1016/j.apcatb.2007.12.009
  7. M.P. Andersson F. Abild-Pedersen, I.N. Remediakis, T. Bligaard, G. Jones, J. Engbaek, O. Lytken, S. Horch, J.H. Nielsen, J. Sehested, J.R. Rostrup- Nielsen, J.K. Norskov, I. Chorkendorff "Structure sensitivity of the methanation reaction: $H_{2}$-induced CO dissociation on nickel surfaces", Journal of Catalysis, 255, 6-19, (2008) https://doi.org/10.1016/j.jcat.2007.12.016
  8. J. Panpranot, J.G. Goodwin, A. Sayari "CO hydrogenation on Ru-promoted Co/MCM-41 catalysts", Journal of Catalysis, 211, 530–539, (2002) https://doi.org/10.1016/S0021-9517(02)93761-9
  9. P. Burattin, M. Che, C. Louis "Molecular approach to the mechanism of deposition−precipitation of the Ni(II) phase on silica", Journal of Physical Chemistry B, 102, 2722-2732, (1998) https://doi.org/10.1021/jp980018k
  10. P. Burattin, M. Che, C. Louis "Metal particle size in Ni/$SiO_{2}$ materials prepared by deposition precipitation: Influence of the nature of the Ni(II) phase and of its interaction with the support", Journal of Physical Chemistry B, 103, 6171-6178, (1999) https://doi.org/10.1021/jp990115t
  11. H. Zhao, D.J. Draelants, G.V. Baron "Preparation and characterisation of nickel-modified ceramic filters", Catalysis Today, 56, 229–237, (2000) https://doi.org/10.1016/S0920-5861(99)00280-1
  12. R. Nares, J. Ramírez, A.G. Alejandre, C. Louis, T. Klimova "Ni/H$\beta$-zeolite catalysts prepared by deposition−precipitation", Journal of Physical Chemistry B, 106, 13287-13293, (2002) https://doi.org/10.1021/jp0207679
  13. H. Habazakia, M. Yamasaki, B.-P. Zhang, A. Kawashima, S. Kohno, T. Takai, K. Hashimoto "Co methanation of carbon monoxide and carbon dioxide on supported nickel and cobalt catalysts prepared from amorphous alloys", Applied Catalysis A: General, 172, 131-140, (1998) https://doi.org/10.1016/S0926-860X(98)00121-5
  14. X. Guan, J. Deng "Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes", Materials Letters, 61, 621-625, (2007) https://doi.org/10.1016/j.matlet.2006.05.026