• 제목/요약/키워드: Catalyst dispersion

검색결과 163건 처리시간 0.026초

Eco-AZ91 MgH2의 반응열 제어에 미치는 촉매 분산 효과 (Effects of Catalyst Dispersion for Reaction Energy Control on Eco-AZ91 MgH2)

  • 이수선;석송;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.631-640
    • /
    • 2023
  • This study selected Eco-AZ91 MgH2, which shows high enthalpy as a material for this purpose, as the basic material, and analyzed the change in characteristics by synthesizing TiNi as a catalyst to control the thermodynamic behavior of MgH2. In addition, the catalyst dispersion technology using graphene oxide (GO) was studied to improve the high-temperature aggregation phenomenon of Ni catalyst and to secure a source technology that can properly disperse the catalyst. XRD, SEM, and BET analysis were conducted to analyze the metallurgical properties of the material, and TGA and DSC analysis were conducted to analyze the dehydrogenation temperature and calorific value, and the correlation between MgH2, TiNi catalyst, and GO reforming catalyst was analyzed. As a result, the MgH2-5 wt% TiNi at GO composite could lower the dehydrogenation temperature to 478-492 K due to the reduction of the catalyst aggregation phenomenon and the increase in the reaction specific surface area, and an experimental result for the catalyst dispersion technology by GO could be ensured.

선택적 CO 산화 반응을 위한 Ru/$\alpha-Al_2O_3$ 촉매 고분산 제조 방법에 관한 연구 (Preparation of Highly Dispersed Ru/$\alpha-Al_2O_3$ Catalyst for Preferential CO Oxidation)

  • 엄현지;구기영;정운호;이영우;윤왕래
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.390-397
    • /
    • 2010
  • 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts are prepared by deposition-precipitation method for the preferential CO oxidation In order to investigate the effect of pH on the Ru dispersion and particle size, the pH of precursor solution is adjusted to between 5.5 and 9.5. 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH of 6.5 has high Ru dispersion of 17.9% and small particle size of 7.7nm. In addition, 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH 6.5 is easily reduced at low temperatures below $150^{\circ}C$ due to high dispersion of $RuO_2$ particle and shows high CO conversion over 90% in the wide temperature range between $100^{\circ}C$ and $160^{\circ}C$. Moreover, the deposition-precipitation is a feasible method to improve the Ru dispersion as compared to the impregnation method. The 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared by deposition-precipitation exhibits higher CO conversion than 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts prepared by impregnation due to higher metal dispersion and better reducibility at low temperature.

분산제 첨가에 따른 탈질촉매의 강도세기 및 전환특성 (Strength and conversion characteristics of DeNOx catalysts with the addition of dispersion agent)

  • 이현희;박광희;차왕석
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6575-6580
    • /
    • 2013
  • 가혹한 조건에서도 사용할 수 있도록 촉매의 강도세기를 증진시키기 위해 다양하게 촉매를 개질하였다. SCR촉매는 바인더와 분산제를 이용하여 개질하였으며 고정층반응기에서 실험하였다. 개질된 촉매에 대한 수소이용정도, 암모니아 흡착정도를 FT-IR과 $H_2$-TPR을 이용하여 측정하였다. 2.3g의 바인더, 4.7g의 에탄올 그리고 0.1g의 분산제가 SCR촉매에 적절하게 침지된 경우 촉매 강도세기에 있어 약 12%의 증가가 있었다. 그러나 촉매의 강도세기가 증가하는 것에 반해 SCR촉매의 효율은 2~10% 감소하는 경향을 보였다. 그리고 바인더, 분산제, $SiO_2$용액으로 구성된 혼합용액을 촉매에 침지시킬 경우, 촉매의 질소산화물 전환율은 다소 감소하였다. 이는 SCR 반응에 있어 활성점 역할을 하는 Bronsted 산점과 Lewis 산점이 $SiO_2$에 의해 감소하기 때문인 것으로 판단된다.

Hydrogen Production Through Catalytic Dehydrogenation of Decalin over Pt/C Catalyst Using Activated Carbon Aerogel

  • Lee, Gihoon;Kang, Ji Yeon;Jeong, Yeojin;Jung, Ji Chul
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.191-195
    • /
    • 2015
  • To improve its textural properties as a support for platinum catalyst, carbon aerogel was chemically activated with KOH as a chemical agent. Carbon-supported platinum catalyst was subsequently prepared using the prepared carbon supports(carbon aerogel(CA), activated carbon aerogel(ACA), and commercial activated carbon(AC)) by an incipient wetness impregnation. The prepared carbon-supported platinum catalysts were applied to decalin dehydrogenation for hydrogen production. Both initial hydrogen evolution rate and total hydrogen evolution amount were increased in the order of Pt/CA < Pt/AC < Pt/ACA. This means that the chemical activation process served to improve the catalytic activity of carbon-supported platinum catalyst in this reaction. The high surface area and the well-developed mesoporous structure of activated carbon aerogel obtained from the activation process facilitated the high dispersion of platinum in the Pt/ACA catalyst. Therefore, it is concluded that the enhanced catalytic activity of Pt/ACA catalyst in decalin dehydrogenation was due to the high platinum surface area that originated from the high dispersion of platinum.

Hydrophobic Catalyst Mixture for the Isotopic Exchange Reaction between Hydrogen and Water

  • Paek S.;Ahn D.H.;Choi H.J.;Kim K.R.;LEE M.;YIM S.P.;CHUNG H.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.141-148
    • /
    • 2005
  • Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  • PDF

프로필렌글리콜에 분산된 나피온 이오노머로 제조된 공기극 촉매층의 연료전지 성능 특성 연구 (Electrochemical Behavior of Cathode Catalyst Layers Prepared with Propylene Glycol-based Nafion Ionomer Dispersion for PEMFC)

  • 우승희;양태현;박석희;임성대
    • Korean Chemical Engineering Research
    • /
    • 제57권4호
    • /
    • pp.512-518
    • /
    • 2019
  • 고분자연료전지용 막전극접합체(Membrane Electrode Assembly, MEA)의 저가화 및 고성능화를 위하여 촉매층을 구성하는 촉매와 이오노머의 계면 특성에 대한 이해가 중요한 연구주제가 되고 있다. 본 연구에서는 이오노머의 구조 제어를 위하여 상용 이오노머의 용매로 사용되는 물 대신에 프로필렌글리콜(Propylene Glycol, PG)을 용매로 사용하여 단측쇄(Short Side Chain, SSC) 나피온 이오노머가 분산된 현탁액을 제조하고 이를 이용하여 공기극 촉매층을 제조하여 연료전지 성능 특성을 평가하였다. PG 기반 이오노머의 함량을 20~35 wt%로 증가시키면서 제조된 촉매층의 연료전지 성능은 상용 물 기반 이오노머와는 달리 이오노머 함량이 35 wt%까지 증가함에 따라 성능도 지속적으로 증가하였다. PG 기반 이오노머의 작은 입도와 느린 건조 속도는 균일 구조의 촉매층 형성을 유도하여 수소이온전달에는 효과적이었지만 PG 기반 이오노머 필름의 낮은 산소투과도는 MEA 성능을 저하시키는 주요 문제로서 개선이 필요하였다.

[Hmim][PF6]를 사용한 벤질 알코올의 호기성 산화반응용 팔라듐-은 차콜 촉매 제조 (Synthesis of Pd-Ag on Charcoal Catalyst for Aerobic Benzyl Alcohol Oxidation Using [Hmim][PF6])

  • 추연준;유계상
    • 공업화학
    • /
    • 제25권4호
    • /
    • pp.425-429
    • /
    • 2014
  • 호기성 벤질 알코올 산화반응용 상용촉매 개발을 위하여 팔라듐이 담지된 차콜 입자를 제조하였다. 특히 촉매의 팔라듐 분산도를 높이기 위해서 상온 이온성액체 중 하나인 [Hmim][$PF_6$]을 기능성 용매로 사용하여 입자를 합성하였다. 다양한 농도의 팔라듐을 함침하여 제조된 입자의 반응성을 측정한 결과 7.5 wt%의 촉매가 가장 우수한 반응 활성과 안정성을 나타내었다. 또한 조촉매로서 다양한 농도의 은입자를 합침하여 촉매를 제조하였다. 동일한 반응조건에서 팔라듐과 은의 질량 비율이 9 : 1인 촉매가 높은 금속 분산도로 인하여 가장 반응성이 우수하였다.

고순도 수소 생산을 위한 CO 선택적 산화 반응용 Pt 촉매 연구 (A Study on Preferential CO Oxidation over Supported Pt Catalysts to Produce High Purity Hydrogen)

  • 전경원;정대운;장원준;나현석;노현석
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.353-358
    • /
    • 2013
  • To develop preferential CO oxidation reaction (PROX) catalyst for small scale hydrogen generation system, supported Pt catalysts have been applied for the target reaction. The supports were systematically changed to optimize supported Pt catalysts. $Pt/Al_2O_3$ catalyst showed the highest CO conversion among the catalysts tested in this study. This is due to easier reducibility, the highest dispersion, and smallest particle diameter of $Pt/Al_2O_3$. It has been found that the catalytic performance of supported Pt catalysts for PROX depends strongly on the reduction property and depends partly on the Pt dispersion of supported Pt catalysts. Thus, $Pt/Al_2O_3$ can be a promising catalyst for PROX for small scale hydrogen generation system.

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

나노입자의 구조와 모양, 담지체 및 하이브리드 시스템 제어를 통한 직접메탄올 연료전지의 촉매 개발 (Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs)

  • 이영욱;신태호
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.189-197
    • /
    • 2019
  • Direct methanol fuel cells (DMFCs) have found a wide variety of commercial applications such as portable computer and mobile phone. In a fuel cell, the catalysts have an important role and durability and efficiency are determined by the ability of the catalyst. The activity of the catalyst is determined by the structure and shape control of the nanoparticles and the dispersion of the nanoparticles and application system. The surface energy of nanoparticles determines the activity by shape control and the nanostructure is determined by the ratio of bi- and tri-metals in the alloy and core-shell. The dispersion of nanoparticles depends on the type of support such as carbon, graphen and metal oxide. In addition, a hybrid system using both optical and electrochemical device has been developed recently.