Browse > Article
http://dx.doi.org/10.14478/ace.2014.1063

Synthesis of Pd-Ag on Charcoal Catalyst for Aerobic Benzyl Alcohol Oxidation Using [Hmim][PF6]  

Choo, Yunjun (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
Publication Information
Applied Chemistry for Engineering / v.25, no.4, 2014 , pp. 425-429 More about this Journal
Abstract
Pd on charcoal particles were prepared by wet impregnation to develop commercial catalyst for aerobic benzyl alcohol oxidation. Especially, one of room temperature ionic liquids, [Hmim][$PF_6$], was used as an effective solvent in the synthesis to improve the metal dispersion of the catalysts. Among the Pd/Charcoal with various Pd concentrations, 7.5 wt% catalyst showed the higher catalytic activity and stability. Moreover, Ag was used as a promoter with various ratios in catalyst preparation. Under identical reaction conditions, the catalyst with 9 : 1 of Pd and Ag weight ratios was most active due to higher metal dispersion.
Keywords
Pd-Ag on Charcoal; [Hmim][$PF_6$]; Aerobic benzyl alcohol oxidation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. A. Sheldon, I. W. C. E. Arends, G. J. T. Brink, and A. Dijksman, Green, catalytic oxidations of alcohols, Acc. Chem. Res., 35, 774-781 (2002).   DOI   ScienceOn
2 R. A. Sheldon and J. K. Kochi, Metal-catalyzed oxidation of organic compounds, Academic Press, New York (1981).
3 R. V. Stevens, K. T. Chapman, and H. N. Weller, Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones, J. Org. Chem., 45, 2030-2032 (1980).   DOI
4 J. R. Holum, Study of the chromium (VI) oxide-pyridine complex, J. Org. Chem., 26, 4814-4816 (1961).   DOI
5 D. G. Lee and U. A. Spitzer, Aqueous dichromate oxidation of primary alcohols, J. Org. Chem., 35, 3589-3590 (1970).   DOI
6 R. J. Highet and W. C. Wildman, Solid manganese dioxide as an oxidizing agent, J. Am. Chem. Soc., 77, 4399-4401 (1955).   DOI
7 F. M. Menger and C. Lee, Synthetically useful oxidations at solid sodium permanganate surfaces, Tetrahedron Lett., 22, 1655-1656 (1981).   DOI   ScienceOn
8 J. B. Jeong and K. S. Yoo, Development of hexafluoropropylene hydrogenation with Pd/C particles prepared with 1-hexyl-3-methylimidazolium tetrafluoroborate, Appl. Chem. Eng., 24, 412-415 (2013).
9 D. Astruc, F. Lu, and J. R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed., 44, 7852-7872 (2005).   DOI   ScienceOn
10 Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, and N. Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control, Nature, 418, 164-167 (2002).   DOI   ScienceOn
11 J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley, High-performance nanocatalysts for single-step hydrogenations, Acc. Chem. Res., 36, 20-30 (2003).   DOI   ScienceOn
12 R. Narayanan and M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 4, 1343-1348 (2004).   DOI   ScienceOn
13 S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, and P. Yang, Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater., 6, 692-697 (2007).   DOI   ScienceOn
14 K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, and G. A. Somorjai, Platinum nanoparticle shape effects on benzene hydrogenation selectivity, Nano Lett., 7, 3097-3101 (2007).   DOI   ScienceOn
15 C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen, Angew. Chem, Int. Ed., 47, 3588-3591 (2008).   DOI   ScienceOn
16 P. Wasserscheid and W. Keim, Ionic liquids-new "Solutions" for transition metal catalysis, Angew. Chem. Int. Ed., 39, 3773-3789 (2000).
17 T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071-2084 (1999).   DOI   ScienceOn
18 K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000).   DOI   ScienceOn
19 M. Hasan, M. Musawir, P. N. Davey, and I. V. Kozhevnikov, Oxidation of primary alcohols to aldehydes with oxygen catalysed by tetra-n-propylammonium perruthenate, J. Mol. Catal. A Chem., 180, 77-84 (2002).   DOI   ScienceOn
20 T. Nishimura, T. Onoue, K. Ohe, and S. Uemura, Palladium (II)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen, J. Org. Chem., 64, 6750-6755 (1999).   DOI   ScienceOn
21 K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004).   DOI   ScienceOn
22 A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005).   DOI   ScienceOn
23 W. Liu and M. Flytzani-Stephanopoulos, Cu-and Ag-modified cerium oxide catalysts for methane oxidation, J. Catal., 153, 304-316 (1995).   DOI   ScienceOn
24 A. Arcadi and S. Di Giuseppe, Recent applications of gold catalysis in organic synthesis, Curr. Org. Chem., 8, 795-812 (2004).   DOI   ScienceOn
25 Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B., 106, 9463-9483 (2002).
26 P. Vonmatt and A. Pfaltz, Chiral phosphinoaryldihydrooxazoles as ligands in asymmetric catalysis: Pd catalyzed allylic substitution, Angew. Chem. Int. Ed., 32, 566-568 (1993).   DOI   ScienceOn
27 M. Fernandez-Garcia, A. Martinez-Arias, L. N. Salamanca, J. M. Coronado, J. A. Anderson, J. C. Conesa, and J. Soria, Influence of ceria on Pd activity for the CO + $O_2$ reaction, J. Catal., 187, 474-485 (1999).   DOI   ScienceOn
28 R. A. Sheldon, I. Arends, and A. Dijksman, New developments in catalytic alcohol oxidations for fine chemicals synthesis, Catal. Today, 57, 157-166 (2000).   DOI   ScienceOn