Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.4.191

Hydrogen Production Through Catalytic Dehydrogenation of Decalin over Pt/C Catalyst Using Activated Carbon Aerogel  

Lee, Gihoon (Department of Chemical Engineering, Myongji University)
Kang, Ji Yeon (Department of Chemical Engineering, Myongji University)
Jeong, Yeojin (Department of Chemical Engineering, Myongji University)
Jung, Ji Chul (Department of Chemical Engineering, Myongji University)
Publication Information
Korean Journal of Materials Research / v.25, no.4, 2015 , pp. 191-195 More about this Journal
Abstract
To improve its textural properties as a support for platinum catalyst, carbon aerogel was chemically activated with KOH as a chemical agent. Carbon-supported platinum catalyst was subsequently prepared using the prepared carbon supports(carbon aerogel(CA), activated carbon aerogel(ACA), and commercial activated carbon(AC)) by an incipient wetness impregnation. The prepared carbon-supported platinum catalysts were applied to decalin dehydrogenation for hydrogen production. Both initial hydrogen evolution rate and total hydrogen evolution amount were increased in the order of Pt/CA < Pt/AC < Pt/ACA. This means that the chemical activation process served to improve the catalytic activity of carbon-supported platinum catalyst in this reaction. The high surface area and the well-developed mesoporous structure of activated carbon aerogel obtained from the activation process facilitated the high dispersion of platinum in the Pt/ACA catalyst. Therefore, it is concluded that the enhanced catalytic activity of Pt/ACA catalyst in decalin dehydrogenation was due to the high platinum surface area that originated from the high dispersion of platinum.
Keywords
hydrogen production; activated carbon aerogel; decalin; dehydrogenation; platinum catalyst;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Li, Y. Huang, J. Zhu, T. Zhao and X. Zhou, Catal. Commun., 10, 815 (2009).   DOI   ScienceOn
2 B. Fang and L. Binder, ElectoChim. Acta, 52, 6916 (2007).   DOI   ScienceOn
3 H. W. Park, U. G. Hong, Y. J. Lee and I. K. Song, Appl. Catal. A: Gen., 409-410, 167 (2011).   DOI
4 J. Wang and S. Kaskel, J. Mater. Chem., 45, 23710 (2012).
5 S. H. Kwon, E. Lee, B.-S. Kim, S.-G. Kim, B.-J. Lee, M.-S. Kim and J. C. Jung, Curr. Appl. Phys., 14, 603 (2014).   DOI   ScienceOn
6 S. Hodoshima, H. Arai and Y. Saito, Int. J. Hydrogen Energy, 28, 197 (2003).   DOI   ScienceOn
7 S. M. Ibrhim, Korean J. Chem. Eng., 31, 1792 (2014).   DOI   ScienceOn
8 A. Shukla, S. Karmarkar and R. B. Biniwale, Int. J. Hydrogen Energy, 37, 3719 (2012).   DOI   ScienceOn
9 M. P. Lazaro, E. Garcia-Bordeje, D. Sebastian, M. J. Lazaro and R. Moliner, Catal. Today, 138, 203 (2008).   DOI   ScienceOn
10 R. B. Biniwale, S. Rayalu, S. Devotta and M. Ichikawa, Int. J. Hydrogen Energy, 33, 360 (2008).   DOI   ScienceOn
11 D. sbastian, C. Alegre, L. Calvillo, M. Perez, R. Moliner and M. Laazaro, Int. J. Hydrogen Energy, 39, 4109 (2014).   DOI   ScienceOn
12 G. W. H. Scherer, E. Newson and A. Wokaun, Int. J. Hydrogen Energy, 24, 1157 (1999).   DOI   ScienceOn
13 S. Hodoshima, H. Arai, S. Takaiwa, Y. Saito, Int. J. Hydrogen Energy, 28, 1255 (2003).   DOI   ScienceOn
14 S. Hodoshima, S. Takaiwa, A. Shono, K. Satoh and Y. Saito, Appl. Catal. A: Gen., 283, 235 (2005).   DOI
15 N. Jiang, K. S. R. Rao, M. Jin and S. Park, Appl. Catal. A: Gen., 425-426, 62 (2012).   DOI