• Title/Summary/Keyword: Cast method

Search Result 828, Processing Time 0.034 seconds

A study on the Mechanical characteristics of austempered ductile cast iron to hardness and texture variation in drilling (오스템퍼링한 구상흑연주철(ADI)의 드릴 가공시 경도 및 현미경조직변화에 관한 연구)

  • 조규재
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.81-88
    • /
    • 1999
  • This paper was carried out to know the influence of advanced austempered ductile cast iron (ADI) on the tool life and mechanical properties of drilling machinability. For manufactured method of ADI, the spheroidal graphite cast iron were austenized at 90$0^{\circ}C$ for 1 hour and then austempered for 2 hour at 37$0^{\circ}C$ in the salt bath. And interrelationship has been investigated between tool life and mechanical characteristics of specimen material on drilling condition when the ordinary and step-feed drilling are carried out to drill holes of specimens. Tensile strength and hardness of ADI decrease and elongation of ADI increases with the increase austempered temperature. It is known that about 2 times of tool life in the case of step-feed decreases compared with ordinary feed due to the high hardness of ADI and hardness ascribed to the fact that retained austenite became to martensite state due to cutting heat in drilling. Under the constant feed rate 0.1mm/rev relation between hardness and length of end tip after drilling can be formularized to Hv=$788.46L^{-0.096}$ for the cutting speed 6.1m/min.

  • PDF

A Statistical Methodology for Evaluating the Residual Life of Water Mains (상수관로의 잔존수명 평가를 위한 통계적 방법론)

  • Park, Suwan;Choi, Chang Log;Kim, Jeong Hyun;Bae, Cheol Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.305-313
    • /
    • 2009
  • This paper provides a method for evaluating a residual life of water mains using a proportional hazard model(PHM). The survival time of individual pipe is defined as the elapsed time since installation until a break rate of individual pipe exceeds the Threshold Break Rate. A break rate of an individual pipe is estimated by using the General Pipe Break Model(GPBM). In order to use the GPBM effectively, improvement of the GPBM is presented in this paper by utilizing additional break data that is the cumulative number of pipe break of 0 for the time of installation and adjusting a value of weighting factor(WF). The residual lives and hazard ratios of the case study pipes of which the cumulative number of pipe breaks is more than one is estimated by using the estimated survival function. It is found that the average residual lives of the steel and cast iron pipes are about 25.1 and 21 years, respectively. The hazard rate of the cast iron pipes is found to be higher than the steel pipes until 20 years since installation. However, the hazard rate of the cast iron pipes become lower than the hazard rates of the steel pipes after 20 years since installation.

RRA Treatment of Semi-Solid Al-Zn-Mg-Cu Al Alloy Fabricated by Cooling Plate (냉각판으로 제조된 Al-Zn-Mg-Cu계 반응고 알루미늄 합금의 RRA 처리)

  • Kim, Dae-Hwan;Shim, Sung-Yong;Kim, Young-Hwa;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.265-269
    • /
    • 2009
  • The optimum RRA heat treating conditions and SCC (stress corrosion cracking) resistance of semi-solid Al-Zn-Mg-Cu alloy fabricated by inclined cooling plate were compared with those of conventional mould cast alloys. The non-stirring method characterized by using a cooling plate can effectively eliminate dendritic structure and form a fine globular semisolid microstructure in as-cast Al-Zn-Mg-Cu alloy and the SCC resistance of semi-solid Al-Zn-Mg-Cu alloy was higher than that of conventional mold cast alloy. Also, after retrogressed treatment at RRA heat treatment of semi-solid Al-Zn-Mg-Cu alloy, retrogressed treatment time has increased more than 10 minutes at $180^{\circ}C$ to recovery the T6 heat treatment strength.

Dynamic shear strength of unreinforced and Hairpin-reinforced cast-in-place anchors using shaking table tests

  • Kim, Dong Hyun;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.39-58
    • /
    • 2016
  • Since the publication of ACI 318-02, the concrete capacity design (CCD) method has been used to determine the resistance of unreinforced concrete anchors. The regulation of steel-reinforced anchors was proposed in ACI 318-08. Until ACI 318-08, the shear resistance of concrete breakout for an unreinforced anchor during an earthquake was reduced to 75% of the static shear strength, but this reduction has been eliminated since ACI 318-11. In addition, the resistance of a hairpin-reinforced anchor was calculated using only the strength of the steel, and a regulation on the dynamic strength was not given for reinforced anchors. In this study, shaking table tests were performed to evaluate the dynamic shear strength of unreinforced and hairpin-reinforced cast-in-place (CIP) anchors during earthquakes. The anchors used in this study were 30 mm in diameter, with edge distances of 150 mm and embedment depths of 240 mm. The diameter of the hairpin steel was 10 mm. Shaking table tests were carried out on two specimens using the artificial earthquake, based on the United States Nuclear Regulatory Commission (US NRC)'s Regulatory Guide 1.60, and the Northridge earthquake. The experimental results were compared to the current ACI 318 and ETAG 001 design codes.

Sliding Wear Properties of Ni-Al based Intermetallics Layer coated on Aluminum through Reaction Synthesis Process (알루미늄 기판 위 반응합성 Coating 된 Ni-Al계 금속간화합물의 미끄럼마모 특성 해석)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • Ni-Al intermetallic coating technology is an available method for the strengthening of aluminum substrate. In this study, Ni-Al intermetallics were coated on an aluminum substrate through a reaction synthesis process at a temperature lower than melting point of aluminum. And the sliding wear properties of the coatings have been investigated to verify their usability and compared the wear properties with those of a cast Al-12.5%Si alloy and an anodizing layer on aluminum. Results show that the wear rate of the coating layer greatly increased at 1 m/s and 1.5 m/s when compared with that of the cast Al-12.5%Si alloy. Much pitting damages were observed on the worn surfaces at these sliding speeds, unlike at other sliding speeds. The wear of the intermetallic coating layer at these sliding speeds seems to be increased by pitting as a consequence of adhesion. In contrast, wear of the coating layer at other speeds hardly occurs, regardless of wear periods. Nevertheless, the wear properties of the intermetallic coating layer on the aluminum substrate through the reaction synthesis process are more stable than those of anodized aluminum and are superior to those of the cast Al-12.5%Si alloy in a steady-state wear period.

Correlation of Microstructure and Tribological Properties of Mo Blended Fe-Base Coatings Fabricated by Atmospheric Plasma Spraying (대기 플라즈마 용사 공정에 의해 제조된 철계합금-몰리브덴 혼합 코팅층의 미세조직 및 내마모성)

  • Lee, Illjoo;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.65-71
    • /
    • 2014
  • Atmospheric plasma spraying (APS) is world-widely used process in the automotive industry as a method to provide wear resistance coatings for engine cylinder bore, using various materials. The weight of engine blocks can be considerably decreased by removing cast iron liners, which can finally result in the improvement of fuel efficiency. In this study, five kinds of powder materials, 1.2C steel powder and 1.2C steel powder mixed with 5, 10, 15, 20 wt.%. molybdenum powder, were deposited by atmospheric plasma spraying in order to investigate the effect of molybdenum on the wear resistance of coatings. Microstructural analysis showed that molybdenum splats were well distributed in 1.2C steel matrix with intimate bonding. The molybdenum added coatings showed better tribological properties than 1.2C steel coating. However, above the 15 wt.%. blending fraction, wear resistance was somewhat degraded with poor roughness of worn surface due to the brittle fracture occurred in molybdenum splats. Consequently, compared to conventional liner material, gray cast iron, 10 wt. pct. molybdenum blended 1.2C steel coating showed much better tribological properties and therefore it looks very feasible to replace gray cast iron liner.

Partial Discharge Pattern Recognition of Cast Resin Current Transformers Using Radial Basis Function Neural Network

  • Chang, Wen-Yeau
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.293-300
    • /
    • 2014
  • This paper proposes a novel pattern recognition approach based on the radial basis function (RBF) neural network for identifying insulation defects of high-voltage electrical apparatus arising from partial discharge (PD). Pattern recognition of PD is used for identifying defects causing the PD, such as internal discharge, external discharge, corona, etc. This information is vital for estimating the harmfulness of the discharge in the insulation. Since an insulation defect, such as one resulting from PD, would have a corresponding particular pattern, pattern recognition of PD is significant means to discriminate insulation conditions of high-voltage electrical apparatus. To verify the proposed approach, experiments were conducted to demonstrate the field-test PD pattern recognition of cast resin current transformer (CRCT) models. These tests used artificial defects created in order to produce the common PD activities of CRCTs by using feature vectors of field-test PD patterns. The significant features are extracted by using nonlinear principal component analysis (NLPCA) method. The experimental data are found to be in close agreement with the recognized data. The test results show that the proposed approach is efficient and reliable.

A study for prediction of temperature distribution in laser-assisted turning for rod-shaped cast iron (레이저 보조선삭 중 주철환봉 내부의 온도분포 예측에 관한 연구)

  • Kim, Kwan-Woo;Cho, Hae-Yong;Lee, Jae-Hoon;Suh, Jeong;Shin, Dong-Sig
    • Laser Solutions
    • /
    • v.13 no.2
    • /
    • pp.10-16
    • /
    • 2010
  • Laser-assisted machining is dependent on absorbed energy density into workpiece. Generally, the absorptivity of laser beam is dependent on wave length of laser, materials, surface roughness, etc. Various shapes and energy densities for beam irradiation can be used to laser-assisted machining. In this thesis, efficient method of heat source modeling was developed and designed by using one fundamental experimental trials. And then, laser-assisted machining of rod-shaped cast iron was simulated by using commercial FEM code MARC. Simulations and experiments with various conditions were carried out to determine suitable condition of pre-heating for laser-assisted turning process. Temperature distribution of cutting zone could be predicted by simulation.

  • PDF

FEM Analysis on Cavity Closure Behavior during Hot Open Die Forging Process (열간 자유단조시 내부 공극 압착 거동에 관한 유한요소해석)

  • Lee, Y.S.;Kwon, Y.C.;Kwon, Y.N.;Lee, S.W.;Kim, N.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.50-52
    • /
    • 2007
  • Large size forged parts usually were made by hot open die forging because of the die cost, high applied load and small manufacturing quantities. Cast ingots were used in open die forging and the ingots almost included the cavities in its inside. Therefore, one of the aims for forging processes is to close and remove the cavities. However, its criteria were well not defined since the studies have many difficulties to investigate the cavity behaviors because of its large size. In this study, the cavity closure behavior was investigated by experimental and FE analysis. The FEM analysis is performed to investigate the overlap defect of cast ingots during free forging stage. The measured flow stress data were used to simulate the forging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}$-3D. The calculated results of cavity closure behavior are compared with the measured results before and after forging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.

  • PDF

Effect of Mold Materials on the Microstructure and Tensile Properties of Al-Si based Lost Foam Casting Alloy (Al-Si계 소실모형주조합금의 미세조직 및 인장성질에 미치는 주형재료의 영향)

  • Kim, Jeong-Min;Lee, Gang-Rae;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.39 no.5
    • /
    • pp.87-93
    • /
    • 2019
  • The effects of mold materials on the microstructure and tensile properties were investigated to develop a mass production technique of aluminum alloy parts with excellent mechanical properties using a lost foam casting method. The microstructures of the plate-shaped cast alloy showed a tendency to be finer in proportion to the thickness of the plate, and a remarkably fine structure was obtained by applying a steel chill or a ball as a mold material compared to general sand. When a steel ball was used, it was observed that the larger the ball, the finer the cast structure and the better the tensile properties. The microstructure and tensile properties of the cast parts with complex shapes were greatly affected by the gating system, but the positive effects of the steel chill and the steel ball as a mold material were clear.