• Title/Summary/Keyword: Cast Steel

Search Result 494, Processing Time 0.023 seconds

Classification of ultrasonic signals of thermally aged cast austenitic stainless steel (CASS) using machine learning (ML) models

  • Kim, Jin-Gyum;Jang, Changheui;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1167-1174
    • /
    • 2022
  • Cast austenitic stainless steels (CASSs) are widely used as structural materials in the nuclear industry. The main drawback of CASSs is the reduction in fracture toughness due to long-term exposure to operating environment. Even though ultrasonic non-destructive testing has been conducted in major nuclear components and pipes, the detection of cracks is difficult due to the scattering and attenuation of ultrasonic waves by the coarse grains and the inhomogeneity of CASS materials. In this study, the ultrasonic signals measured in thermally aged CASS were discriminated for the first time with the simple ultrasonic technique (UT) and machine learning (ML) models. Several different ML models, specifically the K-nearest neighbors (KNN), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP) models, were used to classify the ultrasonic signals as thermal aging condition of CASS specimens. We identified that the ML models can predict the category of ultrasonic signals effectively according to the aging condition.

Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle (스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가)

  • Park, June-Soo;Song, Min-Seop;Kim, Jong-Soo;Kim, In-Yong;Yang, Jun-Seog
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.100-100
    • /
    • 2009
  • This paper is concerned with numerical analyses of residual stresses in welds and material's susceptibility to stress corrosion cracking (SCC) for the primary piping system in nuclear power plants: Both the dissimilar metal weld (DMW) for stainless steel to low alloy steel joints and the similar metal weld (SMW) for forged stainless steel to cast stainless steel joints are considered. Thermal elasto-plastic analyses using the finite element method (FEM) are performed to predict residual stresses generated in fabrication welding and its related processes for both the DMW and SMW, including effects of quenching for cast stainless steel piping, machining of the DMW root, and grinding of the SMW root. As a result, the effect of quenching should be included in the evaluation of residual stresses in the SMW for the cast stainless steel piping. It is deemed that residual stresses in both the DMW and SMW would not affect the SCC susceptibility of the welds providing that the welding processes are completed without any weld repair on the inside wall of the joint. However, the grinding process if performed on the safe-end to piping weld, would produce a high level of residual stresses in the inner surface region and thus a stress improvement process (e.g. buffing) should be considered to reduce susceptibilities to SCC.

  • PDF

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

Carbon Pick-up Phenomena in Plain Carbon Steel by Evaporative Pattern Casting Process (소실모형구조법에 의한 탄소강주강 제조시의 Carbon Pick-up 현상)

  • Park, Ik-Min;Park, Hee-Sang;Lee, Dong-Ryol;Lee, Kyung-Whoan;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.23 no.2
    • /
    • pp.86-93
    • /
    • 2003
  • It has been a major concern in the foundry that steel castings manufactured by the evaporative pattern casting process encounter the carbon pick-up problem. A carbon rich layer at the evaporative pattern cast surface is a result of interactions between the gaseous products from foamed polystyrene and the molten metal. The carburized layer with a high hardness makes it difficult to machine the casting. In this study, the influence of the density of EPS pattern and coatings on carbon pick-up phenomena of S25C and S45C commercial carbon cast steel were investigated. As the density of EPS pattern is increased, the carbon concentration of decomposed pattern is increased and the thickness of carburized layer at the surface of steel castings is increased. Also as the density of coatings is increased, the permeability of coatings is decreased and the thickness of carburized layer at the surface of steel castings is increased. S25C steel which has lower original carbon content compared to S45C steel exhibited severe carburization.

The structure analysis of iron relics excavated at dwelling site of Yangsoo-ri (양수리 주거지출토 철제유물의 금속조직과 분석-BC1-AD1 세기 추정 철제유물을 중심으로)

  • Kim, Soo-Ki
    • 보존과학연구
    • /
    • s.27
    • /
    • pp.165-180
    • /
    • 2006
  • The research was conducted to understand type of iron used by those who lived at dwelling site of Yangsoo-ri in between the first century B.C. and the first century A.D. to make steel products and their technique such as steel making process and heat treatment, based on micro structure information obtained through microscopic metallographic structure analysis with SEM-EDS of six steel productsexhumed at the site. Key findings are summarized as below. In the sense that Si-Ca-Al style and less than 0.5% of Ti were found in the non-metallic inclusion, the material used for forged iron ware was magnetite resolved in that. It is, however, unclear whether magnetite was resolved at high temperature or at low temperature. Microscopic structure analysis revealed that forged steel products were made through repeated hot working, the technique of molding by hitting after heating in the process of resolving and molding iron. As a result, the iron used here for the products was not the iron ore which was produced through resolution from discarded cast iron axe, ingot iron. It is probable that to make those steel products, disposed-of cast iron was reused after being molded by decarburizing. Although a few of relics were analyzed for the research, they were of critical importance in defining the process of ironware production from the first century B.C. and the first century A.D. at the Yangsoo-ri region. Judging from the iron from A-19 dwellingsite, it is possible to conclude that the iron was manufactured from cast iron decarburized and yet more research has to be done into relics yetto be exhumed in order to ascertain the finding. All of these findings are believed to play a critical role in further studies to define the steel-manufacturing technique used on the central Korean peninsular in the ancient times.

  • PDF

A Statistical Methodology for Evaluating the Residual Life of Water Mains (상수관로의 잔존수명 평가를 위한 통계적 방법론)

  • Park, Suwan;Choi, Chang Log;Kim, Jeong Hyun;Bae, Cheol Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.305-313
    • /
    • 2009
  • This paper provides a method for evaluating a residual life of water mains using a proportional hazard model(PHM). The survival time of individual pipe is defined as the elapsed time since installation until a break rate of individual pipe exceeds the Threshold Break Rate. A break rate of an individual pipe is estimated by using the General Pipe Break Model(GPBM). In order to use the GPBM effectively, improvement of the GPBM is presented in this paper by utilizing additional break data that is the cumulative number of pipe break of 0 for the time of installation and adjusting a value of weighting factor(WF). The residual lives and hazard ratios of the case study pipes of which the cumulative number of pipe breaks is more than one is estimated by using the estimated survival function. It is found that the average residual lives of the steel and cast iron pipes are about 25.1 and 21 years, respectively. The hazard rate of the cast iron pipes is found to be higher than the steel pipes until 20 years since installation. However, the hazard rate of the cast iron pipes become lower than the hazard rates of the steel pipes after 20 years since installation.

Dynamic shear strength of unreinforced and Hairpin-reinforced cast-in-place anchors using shaking table tests

  • Kim, Dong Hyun;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.39-58
    • /
    • 2016
  • Since the publication of ACI 318-02, the concrete capacity design (CCD) method has been used to determine the resistance of unreinforced concrete anchors. The regulation of steel-reinforced anchors was proposed in ACI 318-08. Until ACI 318-08, the shear resistance of concrete breakout for an unreinforced anchor during an earthquake was reduced to 75% of the static shear strength, but this reduction has been eliminated since ACI 318-11. In addition, the resistance of a hairpin-reinforced anchor was calculated using only the strength of the steel, and a regulation on the dynamic strength was not given for reinforced anchors. In this study, shaking table tests were performed to evaluate the dynamic shear strength of unreinforced and hairpin-reinforced cast-in-place (CIP) anchors during earthquakes. The anchors used in this study were 30 mm in diameter, with edge distances of 150 mm and embedment depths of 240 mm. The diameter of the hairpin steel was 10 mm. Shaking table tests were carried out on two specimens using the artificial earthquake, based on the United States Nuclear Regulatory Commission (US NRC)'s Regulatory Guide 1.60, and the Northridge earthquake. The experimental results were compared to the current ACI 318 and ETAG 001 design codes.

A Study on the Development of Clad Steel for Diesel Engine (디젤엔진용 클래드강의 소재개발에 관한 연구)

  • Ha, Man-Kyung;Hwang, Young-Mo;Park, Hoo-Myung;Jun, Jae-Uhk;Kim, Soo-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.13-19
    • /
    • 2005
  • Metal Bearing's research that use the clad steel had led in advanced country. Metal Bearing that is produced by domestic companies is ship, vehicles, development equipment and plant equipment. This is Cast White Metal Lining Bearing that is Bimetal Bearing standing 2 generation. Cast White Metal Lining Bearing is foreseen to be used widely on industry whole in the future. Cast White Metal Bearing is product that need precision processing. But the technique is generalized widely. So an advanced country is depending on import from a developing country that price is cheaper than itself manufacture. it is judged that high added value creation by deepening of price competition is difficult. Therefore need product development of new form and is changing to Trimetal Bearing parts. Trimetal Bearing is high quality technique that do compression junction to thin plates of special object on the Back Metal. Therefore, this research developed Trimetal bearing's materials.

  • PDF

Flexural behavior of partially prefabricated partially encased composite beams

  • Liang, Jiong-feng;Zhang, Liu-feng;Yang, Ying-hua;Wei, Li
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.705-716
    • /
    • 2021
  • An innovative partially precast partially encased composite beam (PPECB) is put forward based on the existing research. In order to study the flexural performance of the new composite beam which has precast part and cast-in-place part, six prefabricated specimens and one cast-in-place specimen are designed with considering the influence of the production method, the steel flange thickness, the concrete strength grade and the stirrup process on the behavior of the composite beam. Through four points loading and test data collection and analysis, the behavior of partially prefabricated specimen is similar to that of cast-in-place specimen, and the casting method, the thickness of the steel flange, the concrete strength grade and the stirrup process have different influence on the crack, yield and peak load bearing capacity of the component. Finally, the calculation theory of plastic bending of partially precast partially encased concrete composite beams is given. The calculation results are in good agreement with the experimental results, which can be used for practical engineering theory guidance. This paper can provide reference value for further research and engineering application.