• Title/Summary/Keyword: Caspase-11

Search Result 126, Processing Time 0.033 seconds

A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells (인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과)

  • Park, Hae-Sun;Jun, Do-Youn;Woo, Hyun-Ju;Rue, Seok-Woo;Kim, Sang-Kook;Kim, Kyung-Min;Park, Wan;Moon, Byung-Jo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1529-1537
    • /
    • 2009
  • To elucidate further the antitumor effects of a natural L-arginine analogue, L-canavanine, the mechanism underlying apoptogenic activity of L-canavanine and its modulation by protein tyrosine kinase $p56^{lck}$ was investigated in human Jurkat T cells. When the cells were treated with 1.25 to 2.5 mM L-canavanine for 36 h, several apoptotic events including mitochondrial membrane potential (${\Delta\Psi}m$) loss, activation of caspase-9, -3, -8, and -7, poly (ADP-ribose) polymerase (PARP) degradation, and DNA fragmentation were induced without alteration in the levels of Fas or FasL. These apoptotic changes were more significant in $p56^{lck}$-deficient Jurkat clone JCaM1.6 than in $p56^{lck}$-positive Jurkat clone E6.1. The L-canavanine-induced apoptosis observed in $p56^{lck}$-deficient JCaM1.6 cells was significantly reduced by introducing $p56^{lck}$ gene into JCaM1.6 cells by stable transfection. Treatment of JCaM1.6/lck cells with L-canavanine caused a transient 1.6-fold increase in the kinase activity of $p56^{lck}$. Both FADD-positive wild-type Jurkat T cell clone A3 and FADD-deficient Jurkat T cell clone I2.1 exhibited a similar susceptibility to the cytotoxicity of L-canavanine, excluding involvement of Fas/FasL system in triggering L-canavanine-induced apoptosis. The L-canavanine-induced apoptotic sub-$G_1$ peak and activation of caspase-3, -8, and -7 were abrogated by pan-caspase inhibitor (z-VAD-fmk), whereas L-canavanine-induced activation of caspase-9 was not affected. These results demonstrated that L-canavanine caused apoptosis of Jurkat T cells via the loss of ${\Delta\Psi}m$, and the activation of caspase-9, -3, -8, and -7, leading to PARP degradation, and that the $p56^{lck}$ kinase attenuated the ${\Delta\Psi}m$ loss and activation of caspases, and thus contributed as a negative regulator to L-canavanine-induced apoptosis.

A Caspase Inducing Inhibitor Isolated from Forsythiae fructus (연교(Forsythiae fructus)로부터 분리한 caspase 유도 저해물질)

  • Kim, Jin-Hee;Kho, Yung-Hee;Kim, Mee-Ree;Kim, Hyun-A;Lee, Sang-Myung;Lee, Choong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.114-117
    • /
    • 2002
  • During the screening of inhibitors of caspase-3 induction in U937 human monocytic leukemia cells from natural sources, Forsythiae fructus, which showed a high level of inhibition, was selected. And then, the compound was purified from the methanol extract using silica gel column chromatography and HPLC. The inhibitor was identified as rengyolone, by spectroscophic methods of ESI-MS, $^1H-NMR$, $^{13}C-NMR$, DEPT, and HMBC. Rengyolone showed inhibitory activity of caspase-3 induction, a major protease of apoptosis cascade, with an $IC_{50}$ value of $6.25\;{\mu}g/mL$ after 7 h of treatment in U937 cells. It also showed inhibitory activity of caspace-1 induction, with an $IC_{50}$ value of $7.50\;{\mu}g/mL$ after 40 h of treatment in D10S cells. In addition, it showed protective effect against cell death with an $IC_{50}$ value of $11\;{\mu}g/mL$ on U937 cells induced by etoposide after 24 h of treatment, but did not show any cytotoxicity at the same condition without etoposide, a caspase 3 inducing agent.

The Effect of Needle Electrode Electrical Stimulation on the Change of Caspase-3, 9 and Neuronal Nitric Oxide Synthase Immunoreactive Cells in the Sprague Dawley Rats (침전극 저주파자극이 흰쥐의 Caspase-3, 9와 Neuronal Nitric Oxide Synthase 면역반응세포 변화에 미치는 영향)

  • Kim, Soo-Han;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kim, Ji-Sung;Song, Chi-Won
    • Physical Therapy Korea
    • /
    • v.11 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • In most tissues, apoptosis plays a pivotal role in normal development and in regulation of cell number. Therefore inappropriate apoptosis is revealed in a variety of diseases. This study was carried out to investigate the effects of acupuncture and needle electrode electrical stimulation on the change of caspase-3, 9 and neuronal nitric oxide synthase (nNOS) immunoreactive cells in the sprague dawley rats (SD rat). In immobilized SD rats (n=5), enhanced caspase-3 and caspase-9 expression were detected in the reticular part of substantia nigra, and enhanced nNOS was detected in the dorsolateral periaqueductal gray (DL-PAG) of midbrain and the paraventricular nucleus (PVN) of the hypothalamus using immunohistochemistry. Following the immobilization, acupuncture (n=5) and needle electrode electrical stimulation (n=5, 2 Hz) was applied at H$\acute{e}$g$\breve{u}$ (LI4) acupoint of SD rats, respectively. The stress-induced enhancement in the expression of caspase-3, 9 and nNOS were The present results demonstrate that and needle electrode electrical stimulation are effective in the modulation of expression of caspase-3, 9 and nNOS induced by immobilization.

  • PDF

Quinacrin Induces Cytochrome c-dependent Apoptotic Signaling in Human Cervical Carcinoma Cells

  • Fasanmade, Adedigbo A.;Owuor, Edward D.;Ee, Rachel P.L.;Qato, Dima;Heller, Mark;Kong, Ah Ng Tony
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.126-135
    • /
    • 2001
  • Quinacrine (QU), a phospholipase-A2 (PLA-2) inhibitor has been used clinically as a chemotherapeutic adjuvant. To understand the mechanisms leading to its chemotherapeutic effect, we have investigated QU-induced apoptotic signaling pathways in human cervical squamous carcinoma HeLa cells. In this study, we found that QU induced cytochrome c-dependent apoptotic signaling. The release of pro-apoptotic cytochrome c was QU concentration- and time-dependent, and preceded activation of caspase-9 and -3. Flow cytometric FACScan analysis using fluorescence intensities of $DiOC_6$/ demonstrated that QU-induced cytochrome c release was independent of mitochondrial permeability transition (MPT), since the concentrations of QU that induced cytochrome c release did not alter mitochondrial membrane potential (${\blacktriangle}{\Psi}_m$). Moreover, kinetic analysis of caspase activities showed that cytochrome c release led to the activation of caspase-9 and downstream death effector caspase-3, Caspase-3 inhibitor (Ac-DEVD-CHO) partially blocked QU-induced apoptosis, suggesting the importance of caspase-3 in this apoptotic signaling mechanism. Supplementation with arachidonic acid (AA) sustained caspase-3 activation induced by QU. Using inhibitors against cellular arachidonate metabolism of lipooxygenase (Nordihydroxyguaiaretic Acid, NDGA) and cyclooxygenase (5,8,11,14-Eicosatetraynoic Acid, ETYA) demonstrated that QU-induced apoptotic signaling may be dependent on its role as a PLA-2 inhibitor. Interestingly, NDCA attenuated QU-induced cytochrome c release, caspase activity as well as apoptotic cell death. The blockade of cytochrome c release by NDCA was much more effective than that attained with cyclosporin A (CsA), a MPT inhibitor. ETYA was not effective in blocking cytochrome c release, except under very high concentrations. Caspase inhibitor z-VAD blocked the release of cytochrome c suggesting that this signaling event is caspase dependent, and caspase-8 activation may be upstream of the mitochondrial events. In summary, we report that QU induced cytochrome c-dependent apoptotic signaling cascade, which may be dependent on its role as a PLA-2 inhibitor. This apoptotic mechanism induced by QU may contribute to its known chemotherapeutic effects.

  • PDF

Polyacetylene Compound from Cirsium japonicum var. ussuriense Inhibited Caspase-1-mediated IL-$1{\beta}$ Expression

  • Shim, Hong;Moon, Jung Sun;Lee, Sookyeon;Yim, Dongsool;Kang, Tae Jin
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.213-216
    • /
    • 2012
  • Our previous report showed that polyacetylene compound, 1-Heptadecene-11, 13-diyne-8, 9, 10-triol (PA) from the root of Cirsium japonicum var. ussuriense has anti-inflammatory activity. In this study we investigated the role of the PA as inhibitor of caspase-1, which converts prointerleukin-$1{\beta}$ (proIL-$1{\beta}$) to active IL-$1{\beta}$ and is activated by inflammasome involved in the inflammatory process. We tested the effect of PA on the production of pro-inflammatory cytokines, IL-$1{\beta}$ in murine macrophage cell line, RAW264.7. PA inhibited lipopolysaccharide (LPS)-induced IL-$1{\beta}$ production by macrophages at a dose dependent manner. PA also suppressed the activation of caspase-1. The mRNA level of ASC (apoptosis-associated spec-like protein containing a CARD), an important adaptor protein of inflammasome, was decreased in the PA treated group. Therefore our results suggest that the anti-inflammatory effect of PA is due to inhibit the caspase-1 activation.

Apoptosis of Human Jurkat T Cells Induced by the Methylene Chloride Extract from the Stems of Zanthoxylum schinifolium is Associated with Intrinsic Mitochondria-Dependent Activation of Caspase Pathway (인체 급성백혈병 Jurkat T 세포에 있어서 Zanthoxylum schinifolium 줄기의 methylene chloride 추출물에 의해 유도되는 세포자살기전 규명)

  • Jun, Do-Youn;Woo, Mi-Hee;Park, Hae-Sun;Kim, Jun-Seok;Rhee, In-Koo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1499-1506
    • /
    • 2008
  • To examine antitumor activity of the edible plant Zanthoxylum schinifolium, the cytotoxic effect of various organic solvent extracts of its stems on human acute leukemia Jurkat T cells was investigated. Among these extracts such as methanol extract (SS-7), methylene chloride extract (SS-8), ethyl acetate extract (SS-9), n-butanol extract (SS-10), and residual fraction (SL-11), SS-8 exhibited the most cytotoxic activity against Jurkat T cells. The methylene chloride extract (SS-8) possessed the apoptogenic activity capable of inducing sub-G1 peak along with apoptotic DNA fragmentation in Jurkat T cells. Western blot analysis revealed that SS-8 induced apoptosis via mitochondrial cytochrome c release into cytoplasm, subsequent activation of caspase-9 and caspase-3, and cleavage of PARP, which could be blocked by overexpression of Bcl-xL. Jurkat T cell clone I2.1 $FADD^{-/-}$) and Jurkat T cell clone I9.2 (caspase-$8^{-/-}$ were as sensitive as was the wild-type Jurkat T cell clone A3 to the cytotoxic effect of SS-8, suggesting no contribution of Fas/FasL system to the SS-8-mediated apoptosis. The GC-MS analysis of SS-8 showed that it was composed of 16 ingredients including 9,12-octadecanoic acid (18.62%), 2,4-dihydro-5-methyl-4- (1-methylethylidene)- 2-(4-nitrophenyl)-3H- pyrazol-3-one (14.97%), hexadecanoic acid (14.23%), (z,z)-6,9-pentadecadien- 1-ol (13.73%), 5,6-dimethoxy-2-methyl benzofuran (10.95%), and 4-methoxy-2-methylcinnamic acid (5.38%). These results demonstrate that the methylene chloride extract of the stems of Z. schinifolium can induce apoptotic cell death in Jurkat T cells via intrinsic mitochondria-dependent caspase cascade regulated by Bcl-xL without involvement of the Fas/FasL system.

Induction of Apoptosis by Hwangheuk-san in AGS Human Gastric Carcinoma Cells through the Generation of Reactive Oxygen Species and Activation of Caspases (AGS 인체 위암세포에서 황흑산에 의한 ROS 생성 및 caspase 활성 의존적 apoptosis 유발)

  • Hong, Su Hyun;Park, Cheol;Kim, Kyoung Min;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1235-1243
    • /
    • 2015
  • Hwangheuk-san (HHS) is a Korean multi-herb formula comprising four medicinal herbs. HHS, which was recorded in “Dongeuibogam,” has been used to treat patients with inflammation syndromes and digestive tract cancer for hundreds of years. However, little is known about its anti-tumor efficacy. The present study investigated the pro-apoptotic effect and mode of action of HHS against AGS human gastric carcinoma cells. HHS inhibited the cell growth of AGS cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, chromatin condensation, and an accumulation of cells in the sub-G1 phase. HHS-induced apoptotic cell death was associated with the up-regulation of pro-apoptotic Bax protein expression, down-regulation of antiapoptotic Bcl-2 protein, and the release of cytochrome c from mitochondria to the cytosol. The treatment of AGS cells with HHS significantly elevated the generation of reactive oxygen species (ROS). Additionally, apoptosis-inducing concentrations of HHS induced the activation of both caspase-9 and -8, initiator caspases of the mitochondrial-mediated intrinsic and death receptor-mediated extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. However, ROS scavenger and pan-caspases inhibitor significantly blocked HHS-induced growth inhibition and apoptosis. Taken together, these findings suggest that HHS induces apoptosis through ROS- and caspase-dependent mechanisms and that HHS may be a potential chemotherapeutic agent for the control of human gastric cancer.

Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells (핵산합성 억제제인 decitabine과 NF-κB 활성 저해제인 PDTC의 병용 처리에 의한 인체 위암세포사멸 효과 증진)

  • Choe, Won Kyung;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1268-1276
    • /
    • 2018
  • The cytidine analog decitabine (DEC) acts as a nucleic acid synthesis inhibitor, whereas ammonium pyrrolidine dithiocarbamate (PDTC) is an inhibitor of nuclear factor-${\kappa}B$. The aim of this study was to investigate the possible synergistic inhibitory effect of these two inhibitors on proliferation of human gastric cancer AGS cells. The inhibitory effect of PDTC on AGS cell proliferation was significantly increased by DEC in a concentration-dependent manner, and this inhibition was associated with cell cycle arrest at the G2/M phase and the induction of apoptosis. This induction of apoptosis by the co-treatment with PDTC and DEC was related to the induction of DNA damage, as assessed by H2AX phosphorylation. Further studies demonstrated that co-treatment with PDTC and DEC induced the disruption of mitochondrial membrane potential, increased the generation of intracellular reactive oxygen species (ROS) and the expression of pro-apoptotic Bax, and down-regulated the expression of anti-apoptotic Bcl-2, ultimately resulting in the release of cytochrome c from the mitochondria into the cytoplasm. Co-treatment with PDTC and DEC also activated caspase-8 and caspase-9, which are representative caspases of the extrinsic and intrinsic apoptosis pathways. Co-treatment also activated caspase-3, which was accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Taken together, these data clearly indicated that co-treatment with PDTC and DEC suppressed the proliferation of AGS cells by increasing DNA damage and activating the ROS-mediated extrinsic and intrinsic apoptosis pathways.

Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell

  • Park, Eun-Hwa;Kim, Young-Joo;Yamabe, Noriko;Park, Soon-Hye;Kim, Ho-Kyong;Jang, Hyuk-Jai;Kim, Ji Hoon;Cheon, Gab Jin;Ham, Jungyeob;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • Background: Research has been conducted with regard to the development of methods for improving the pharmaceutical effect of ginseng by conversion of ginsenosides, which are the major active components of ginseng, via high temperature or high-pressure processing. Methods: The present study sought to investigate the anticancer effect of heat-processed American ginseng (HAG) in human gastric cancer AGS cells with a focus on assessing the role of apoptosis as an important mechanistic element in its anticancer actions. Results and Conclusion: HAG significantly reduced the cancer cell proliferation, and the contents of ginsenosides Rb1 and Re were markedly decreased, whereas the peaks of less-polar ginsenosides [20(S,R)-Rg3, Rk1, and Rg5] were newly detected. Based on the activity-guided fractionation of HAG, ginsenoside 20(S)-Rg3 played a key role in inducing apoptosis in human gastric cancer AGS cells, and it was generated mainly from ginsenoside Rb1. Ginsenoside 20(S)-Rg3 induced apoptosis through activation of caspase-3, caspase-8, and caspase-9, as well as regulation of Bcl-2 and Bax expression. Taken together, these findings suggest that heat-processing serves as an increase in the antitumor activity of American ginseng in AGS cells, and ginsenoside 20(S)-Rg3, the active component produced by heat-processing, induces the activation of caspase-3, caspase-8, and caspase-9, which contributes to the apoptotic cell death.

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.