Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.11.1268

Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells  

Choe, Won Kyung (Department of Sports Rehabilitation, Gimcheon University)
Choi, Yung Hyun (Department of Biochemistry, Dongeui University College of Korean Medicine)
Publication Information
Journal of Life Science / v.28, no.11, 2018 , pp. 1268-1276 More about this Journal
Abstract
The cytidine analog decitabine (DEC) acts as a nucleic acid synthesis inhibitor, whereas ammonium pyrrolidine dithiocarbamate (PDTC) is an inhibitor of nuclear factor-${\kappa}B$. The aim of this study was to investigate the possible synergistic inhibitory effect of these two inhibitors on proliferation of human gastric cancer AGS cells. The inhibitory effect of PDTC on AGS cell proliferation was significantly increased by DEC in a concentration-dependent manner, and this inhibition was associated with cell cycle arrest at the G2/M phase and the induction of apoptosis. This induction of apoptosis by the co-treatment with PDTC and DEC was related to the induction of DNA damage, as assessed by H2AX phosphorylation. Further studies demonstrated that co-treatment with PDTC and DEC induced the disruption of mitochondrial membrane potential, increased the generation of intracellular reactive oxygen species (ROS) and the expression of pro-apoptotic Bax, and down-regulated the expression of anti-apoptotic Bcl-2, ultimately resulting in the release of cytochrome c from the mitochondria into the cytoplasm. Co-treatment with PDTC and DEC also activated caspase-8 and caspase-9, which are representative caspases of the extrinsic and intrinsic apoptosis pathways. Co-treatment also activated caspase-3, which was accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Taken together, these data clearly indicated that co-treatment with PDTC and DEC suppressed the proliferation of AGS cells by increasing DNA damage and activating the ROS-mediated extrinsic and intrinsic apoptosis pathways.
Keywords
Apoptosis; co-treatment; decitabine; DNA damage; PDTC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chaudhary, A. K., Yadav, N., Bhat, T. A., O'Malley, J., Kumar, S. and Chandra, D. 2016. A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov. Today 21, 38-47.   DOI
2 Chen, D., Peng, F., Cui, Q. C., Daniel, K. G., Orlu, S., Liu, J. and Dou, Q. P. 2005. Inhibition of prostate cancer cellular proteasome activity by a pyrrolidine dithiocarbamate-copper complex is associated with suppression of proliferation and induction of apoptosis. Front. Biosci. 10, 2932-2939.   DOI
3 Daskalakis, M., Blagitko-Dorfs, N. and Hackanson, B. 2010. Decitabine. Recent Results Cancer Res. 184, 131-157.
4 Decker, P. and Muller, S. 2002. Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr. Pharm. Biotechnol. 3, 275-283.   DOI
5 Di Nicuolo, F., Serini, S., Boninsegna, A., Palozza, P. and Calviello, G. 2001. Redox regulation of cell proliferation by pyrrolidine dithiocarbamate in murine thymoma cells transplanted in vivo. Free Radic. Biol. Med. 31, 1424-1431.   DOI
6 Dorstyn, L., Akey, C. W. and Kumar, S. 2018. New insights into apoptosome structure and function. Cell Death Differ. 25, 1194-1208.   DOI
7 Farsinejad, S., Gheisary, Z., Ebrahimi Samani, S. and Alizadeh, A. M. 2015. Mitochondrial targeted peptides for cancer therapy. Tumour Biol. 36, 5715-5725.   DOI
8 Fulda, S. and Debatin, K. M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811.   DOI
9 Gong, X. G., Lv, Y. F., Li, X. Q., Xu, F. G. and Ma, Q. Y. 2010. Gemcitabine resistance induced by interaction between alternatively spliced segment of tenascin-C and annexin A2 in pancreatic cancer cells. Biol. Pharm. Bull. 33, 1261-1267.   DOI
10 Hata, A. N., Engelman, J. A. and Faber, A. C. 2015. The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5, 475-487.   DOI
11 Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407, 770-776.   DOI
12 Hu, Q., Sun, W., Wang, C. and Gu, Z. 2016. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 98, 19-34.   DOI
13 Katsman, A., Umezawa, K. and Bonavida, B. 2009. Chemosensitization and immunosensitization of resistant cancer cells to apoptosis and inhibition of metastasis by the specific NF-kappaB inhibitor DHMEQ. Curr. Pharm. Des. 15, 792-808.   DOI
14 Iessi, E., Logozzi, M., Mizzoni, D., Di Raimo, R., Supuran, C. T. and Fais, S. 2017. Rethinking the combination of proton exchanger inhibitors in cancer therapy. Metabolites 8, E2.   DOI
15 Janssens, S. and Tschopp, J. 2006. Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ. 13, 773-784.   DOI
16 Kantari, C. and Walczak, H. 2011. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta. 1813, 558-563.   DOI
17 Kaufmann, T., Strasser, A. and Jost, P. J. 2012. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 19, 42-50.   DOI
18 Kroemer, G. and Pouyssegur, J. 2008. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482.   DOI
19 Malaguarnera, L., Pilastro, M. R., Vicari, L., Dimarco, R., Manzella, L., Palumbo, G. and Messina, A. 2005. Pyrrolidinedithiocarbamate induces apoptosis in human acute myelogenous leukemic cells affecting NF-kappaB activity. Cancer Invest. 23, 404-412.   DOI
20 Hajra, K. M. and Liu, J. R. 2004. Apoptosome dysfunction in human cancer. Apoptosis 9, 691-704.   DOI
21 Nguyen, D. P., Li, J., Yadav, S. S. and Tewari, A. K. 2014. Recent insights into NF-${\kappa}B$ signalling pathways and the link between inflammation and prostate cancer. BJU Int. 114, 168-176.   DOI
22 Mohamed, M. S., Bishr, M. K., Almutairi, F. M. and Ali, A. G. 2017. Inhibitors of apoptosis: Clinical implications in cancer. Apoptosis 22, 1487-1509.   DOI
23 Moloney, J. N. and Cotter, T. G. 2018. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50-64.   DOI
24 Nakajima, K., Nangia-Makker, P., Hogan, V. and Raz, A. 2017. Cancer self-defense: An immune stealth. Cancer Res. 77, 5441-5444.   DOI
25 Nguyen, H. S., Shabani, S., Awad, A. J., Kaushal, M. and Doan, N. 2018. Molecular markers of therapy-resistant glioblastoma and potential strategy to combat resistance. Int. J. Mol. Sci. 19, E1765.   DOI
26 Pelicano, H., Carney, D. and Huang, P. 2004. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7, 97-110.   DOI
27 Ranganathan, P., Yu, X., Santhanam, R., Hofstetter, J., Walker, A., Walsh, K., Bhatnagar, B., Klisovic, R., Vasu, S., Phelps, M. A., Devine, S., Shacham, S., Kauffman, M., Marcucci, G., Blum, W. and Garzon, R. 2015. Decitabine priming enhances the antileukemic effects of exportin 1 (XPO1) selective inhibitor selinexor in acute myeloid leukemia. Blood 125, 2689-2692.   DOI
28 Reubold, T. F. and Eschenburg, S. 2012. A molecular view on signal transduction by the apoptosome. Cell Signal. 24, 1420-1425.   DOI
29 Rybak, P., Hoang, A., Bujnowicz, L., Bernas, T., Berniak, K., Zarebski, M., Darzynkiewicz, Z. and Dobrucki, J. 2016. Low level phosphorylation of histone H2AX on serine 139 (${\gamma}$ H2AX) is not associated with DNA double-strand breaks. Oncotarget 7, 49574-49587.
30 Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. and Bonner, W. M. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858-5868.   DOI
31 Shao, L., Wu, L. and Zhou, D. 2012. Sensitization of tumor cells to cancer therapy by molecularly targeted inhibition of the inhibitor of nuclear factor ${\kappa}B$ kinase. Transl. Cancer Res. 1, 100-108.
32 Stresemann, C. and Lyko, F. 2008. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer 123, 8-13.   DOI
33 Ta, M. H., Liuwantara, D. and Rangan, G. K. 2015. Effects of pyrrolidine dithiocarbamate on proliferation and nuclear factor-${\kappa}B$ activity in autosomal dominant polycystic kidney disease cells. BMC Nephrol. 16, 212.   DOI
34 Tummers, B. and Green, D. R. 2017. Caspase-8: regulating life and death. Immunol. Rev. 277, 76-89.   DOI
35 Wadhwa, S. and Mumper, R. J. 2013. D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett. 337, 8-21.   DOI
36 Wijermans, P. W., Ruter, B., Baer, M. R., Slack, J. L., Saba, H. I. and Lubbert, M. 2008. Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk. Res. 32, 587-591.   DOI
37 Arlt, A., Gehrz, A., Muerkoster, S., Vorndamm, J., Kruse, M. L., Folsch, U. R. and Schafer, H. 2003. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22, 3243-3251.   DOI
38 Zhang, L., Li, J., Zong, L., Chen, X., Chen, K., Jiang, Z., Nan, L., Li, X., Li, W., Shan, T., Ma, Q. and Ma, Z. 2016. Reactive oxygen species and targeted therapy for pancreatic cancer. Oxid. Med. Cell. Longev. 2016, 1616781.
39 Zhang, X. Y. and Zhang, P. Y. 2016. Combinations in multimodality treatments and clinical outcomes during cancer. Oncol. Lett. 12, 4301-4304.   DOI
40 Appleton, K., Mackay, H. J., Judson, I., Plumb, J. A., McCormick, C., Strathdee, G., Lee, C., Barrett, S., Reade, S., Jadayel, D., Tang, A., Bellenger, K., Mackay, L., Setanoians, A., Schatzlein, A., Twelves, C., Kaye, S. B. and Brown, R. 2007. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J. Clin. Oncol. 25, 4603-4609.   DOI
41 Birch-Machin, M. A., Russell, E. V. and Latimer, J. A. 2013. Mitochondrial DNA damage as a biomarker for ultraviolet radiation exposure and oxidative stress. Br. J. Dermatol. 169, 9-14.   DOI