• Title/Summary/Keyword: Cascading Effect

Search Result 15, Processing Time 0.022 seconds

Preventing cascading failure of electric power protection systems in nuclear power plant

  • Moustafa, Moustafa Abdelrahman Mohamed Mohamed;Chang, Choong-koo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.121-130
    • /
    • 2021
  • Cascading failure is the main cause of large blackouts in electrical power systems; this paper analyzes a cascading failure in Hanbit nuclear power plant unit two (2) caused by a circuit breaker (CB) operation failure. This malfunction has been expanded to the loss of offsite power (LOOP). In this study, current practices are reviewed and then the methodologies of how to prevent cascading failures in protection power systems are introduced. An overview on the implementation of IEC61850 GOOSE messaging-based zone selective interlocking (ZSI) scheme as key solution is proposed. In consideration of ZSI blocking time, all influencing factors such as circuit breaker opening time, relay I/O response time and messages travelling time in the communication network should be taken into account. The purpose of this paper is to elaborate on the effect of cascading failure in NPP electrical power protection system and propose preventive actions for this failures. Finally, the expected advantages and challenges are elaborated.

Experimental Study on Turbulent Characteristics of Axisymmetric Impinging Jet with a Modified Initial Condition (초기조건의 변형에 따른 축대칭 충돌분사류의 난류특성에 대한 연구)

  • 한용운;이근상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3166-3178
    • /
    • 1993
  • The turbulent flow characteristics of impinging jet have been investigated by the hot wire anemometry with a movable impinging wall. Turbulences were generated by the meshed jet as well as the typical round jet and their characteristics were compared, of mean velocity profiles, turbulent intensities. Reynolds stresses, similarities and their centerline flow behaviors. The meshed jet tends to make shear layer wider than the normal one in the initial region and the velocity profiles of the normal jet is rather contractive being compared with those of the meshed one near the wall. The effect of meshed exit appears only within 4D at the begining of jets and the cascading process of the meshed one marches more rapidly than that of the normal jet. The wall effects appear in the downstream of about 0.85 H to the impinging wall for every case of wall positions in both nozzles.

Bit-Rate Analysis of Various Symmetric ESQWs SEED under Optimized Input Power (최적 입사 광 전력 하에서의 대칭 ESQWs SEED의 비트 전송률 특성 분석)

  • Lim, Youn-Sup;Choi, Young-Wan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.66-79
    • /
    • 1999
  • We investigate the effects of high input power on the performance of optical bistable symmetric self-electooptic effect devices (S-SEEDs) using extremely shallow quantum wells (ESQWs). In this study, we consider the four ESQWs SEEDs; anti-reflection (AR)-coated ESQWs S-SEED, back-to-back AR coated ESQWs S-SEED, asymmetric F뮤교-Perot (AFP) ESQWs S-SEED, and back-to-back AFP-ESQWs S-SEED. As the input power increases, device performances such as on/off contrast ratio, on/off reflectivity difference are seriously degraded because of ohmic heating and exciton saturation. On the other hand, switching speed of the device increases up to certain value and then begins to decrease. With reasonable optimization of the input power for the best switching speed operation of the devices in a cascading optical interconnection system, we simulate and analyze the system bit-rate of the various ESQWs S-SEEDs, for a mesa of $5{\times}5{\mu}m^2$ size, changing the namber of quantum wells for the external bias of 0 V and -5V.

  • PDF

Vulnerability Evaluation for Monitoring Wide Area Outage in Transmission Systems (송전 계통 감시 시스템을 위한 취약도 평가 방법 개발)

  • Kim, Jin-Hwan;Lim, Il-Hyung;Lee, Seung-Jae;Choi, Myeon-Song;Lim, Seong-Il;Kim, Sang-Tae;Jin, Bo-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.506-514
    • /
    • 2010
  • Defense systems are needed to prevent catastrophic failures of a power grid due to cascaded events. Cascaded events can be occurred by power flow overload. Especially, it is the most dangerous problem that overload line is outage, because it can make the power system face danger of cascaded. In this paper, vulnerability evaluation for monitoring wide are outage is proposed using by configuration information of transmission systems. This method of vulnerability evaluation is considered direct effect and indirect effect of power flow, especially overload. What is more, it can be used when the configuration of power system changes, as simple fault occurs or maintenance of facility. In the case studies, the estimation and simulation network have been testified and analysed in PSSE and C programming.

Development of Integrated System of Time-Driven Activity-Based Costing(TDABC) Using Balanced Scorecard(BSC) and Economic Value Added(EVA) (BSC와 EVA를 이용한 TDABC 통합시스템의 개발)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.451-469
    • /
    • 2014
  • The purpose of this study is to implement and develop the integrated Economic Value Added (EVA) and Time-Driven Activity-Based Costing (TDABC) model to seek both improvement of Net Operating Profit Less Adjusted Tax (NOPLAT) and reduction of Capital Charge (CC). Net Operating Profit Less Adjusted Tax (NOPLAT) can be maximized by reducing the indirect cost of an unused resource capacity increased by Cost Capacity Ratio (CCR) of TDABC. On the other hand, Capital Charge (CC) can be minimized by improving the efficiency of Invested Capital (IC) considered by Weighted Average Cost of Capital (WACC) of EVA. In addition, the integrated system of TDABC using Balance Scorecard (BSC) and EVA is developed by linking between the lagging indicators and the three leading indicators. The three leading indicators include customer, internal process and growth and learning perspectives whereas the lagging indicator includes NOPLAT and CC in terms of financial perspective. When the Critical Success Factor (CSF) of BSC is cascading as a cause and an effect relationship, time driver of TDABC and capital driver of EVA can be used efficiently as Key Performance Indicator (KPI) of BSC. For a better understanding of the proposed EVA/TDABC model and BSC/EVA/TDABC model, numerical examples are derived from this paper. From the proposed model, the time driver of TDABC and the capital driver of EVA are known to lessen indirect cost from comprehensive income statement when increasing the efficiency of operating IC from the statement of financial position with unified KPI cascading of aligned BSC CSFs.

Robustness Estimation for Power and Water Supply Network : in the Context of Failure Propagation (피해파급에 대한 고찰을 통한 전력 및 상수도 네트워크의 강건성 예측)

  • Lee, Seulbi;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.3
    • /
    • pp.33-42
    • /
    • 2018
  • In the aftermath of an earthquake, seismic-damaged infrastructure systems loss estimation is the first step for the disaster response. However, lifeline systems' ability to supply service can be volatile by external factors such as disturbances of nearby facilities, and not by own physical issue. Thus, this research develops the bayesian model for probabilistic inference on common-cause and cascading failure of seismic-damaged lifeline systems. In addition, the authors present network robustness estimation metrics in the context of failure propagation. In order to quantify the functional loss and observe the effect of the mitigation plan, power and water supply system in Daegu-Gyeongbuk in South Korea is selected as case network. The simulation results show that reduction of cascading failure probability allows withstanding the external disruptions from a perspective of the robustness improvement. This research enhances the comprehensive understanding of how a single failure propagates to whole lifeline system performance and affected region after an earthquake.

Development of Financial Effect Measurement(FEM) Models for Quality Improvement and Innovation Activity (품질개선 및 혁신활동에서 재무성과 측정모형의 개발)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.337-348
    • /
    • 2015
  • This research introduces the Financial Effect Measurement (FEM) models which measures both the improvement and the innovation performance of Quality Control Circle (QCC) and activities of Six Sigma. Concepts and principle of Comprehensive Income Statement (CIS), Balanced Scorecard (BSC), Time-Driven Activity Based-Costing (TDABC) and Total Productive Maintenance (TPM) are applied in order to develop the 4 FEM models presented in this paper. First of all, FEM using CIS depicts the improvement effects of production capacity and yield using relationships between demand and supply, and line balancing efficiency between bottleneck process and non-bottleneck processes. Secondly, cause-and-effect relation of Key Performance Indicator (KPI) is used to present Critical Success Factor (CSF) effects for QC Story 15 steps of QCC and DMAIC (Define, Measure, Analyze, Improve, and Control) of Six Sigma. The next is FEM model for service management innovation activities that uses TDABC to calculate the time-driven effect for improving the indirect activities according to the cost object. Lastly, FEM model for TPM activities presents the interpretation of improvement effect model of TPM Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) maintenance using profit, cash and Economic Added Value (EVA) as metrics of enterprise values. To better understand and further investigate FEMs, recent cases on National Quality Circle Contest are used to evaluate new financial effect measurement developed in this paper.

Flutter Analysis of Annular Cascades in Counter Rotation

  • Nishino, R.;Namba, M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.813-824
    • /
    • 2004
  • The paper studies the effect of neighboring blade rows on flutter characteristics of cascading blades. For this purpose the computation program to calculate the unsteady blade loading based on the un-steady lifting surface theory for contra-rotating annular cascades was formulated and coded. Then a computation program to solve the coupled bending-torsion flutter equation for the contra-rotating annular cascades was also developed. Some results of the flutter analysis are presented. The presence of the neighboring blade row gives rise to significant change in the critical flutter condition when the main acoustic duct mode is of cut-on state.

  • PDF

Multihop Rate Adaptive Wireless Scalable Video Using Syndrome-Based Partial Decoding

  • Cho, Yong-Ju;Radha, Hayder;Seo, Jeong-Il;Kang, Jung-Won;Hong, Jin-Woo
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.273-280
    • /
    • 2010
  • The overall channel capacity of a multihop wireless path drops progressively over each hop due to the cascading effect of noise and interference. Hence, without optimal rate adaptation, the video quality is expected to degrade significantly at any client located at a far-edge of an ad-hoc network. To overcome this limitation, decoding and forwarding (DF), which fully decodes codewords at each intermediate node, can be employed to provide the best video quality. However, complexity and memory usage for DF are significantly high. Consequently, we propose syndrome-based partial decoding (SPD). In the SPD framework an intermediate node partially decodes a codeword and relays the packet along with its syndromes if the packet is corrupted. We demonstrate the efficacy of the proposed scheme by simulations using actual 802.11b wireless traces. The trace-driven simulations show that the proposed SPD framework, which reduces the overall processing requirements of intermediate nodes, provides reasonably high goodput when compared to simple forwarding and less complexity and memory requirements when compared to DF.

A Study on the Application of Under Voltage Load Shedding Scheme in Line Contingency considering Motor Load (모터부하를 고려한 상정사고 발생 시 저전압 부하차단 적용 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • Failure of high-voltage transmission line, which is responsible for large-scale power transmission, can be reason for system voltage instability. There are many methods to prevent voltage instability like adjustment of equipment, the generator voltage setting, and load shedding. Among them, the load shedding, have a problem of economic loss and cascading effect to power system. Therefore, the execution of load shedding, amount and timing is very important. Conventionally, the load shedding setting is decided by the preformed simulation. Now, it is possible to monitor the power system in real time by the appearance of PMU(Phasor Measurement Unit). By this reason, some of research is performed about decentralized load shedding. The characteristics of the load can impact to amount and timing of decentralized load shedding. Especially, it is necessary to consider the influence of the induction motor loads. This paper review recent topic about under voltage load shedding and compare with decentralized load shedding scheme with conventional load shedding scheme. And simulations show the effectiveness of proposed method in resolving the delayed voltage recovery in the Korean Power System.