• 제목/요약/키워드: Carrier concentration and mobility

검색결과 258건 처리시간 0.028초

Changes in Electrical and Optical Properties and Chemical States of the Amorphous In-Ga-Zn-O Thin Films Depending on Growth Temperature

  • Yoo, Han-Byeol;Thakur, Anup;Kang, Se-Jun;Baik, Jae-Yoon;Lee, Ik-Jae;Park, Jae-Hun;Kim, Ki-Jeong;Kim, Bong-Soo;Shin, Hyun-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.346-346
    • /
    • 2012
  • We investigated electrical and optical properties and chemical states of amorphous In-Ga-Zn-O (a-IGZO) thin films deposited at different substrate temperatures (from room temperature to $300^{\circ}C$). a-IGZO thin films were fabricated by radio frequency magnetron sputtering using $In_2O_3$ : $Ga_2O_3$ : ZnO = 1 : 1 : 1 target, and their electrical and optical properties and chemical states were investigated by Hall-measurement, UV-visible spectroscopy and x-ray photoelectron spectroscopy (XPS), respectively. The data showed that as substrate temperature increased, carrier concentration increased, but mobility, conductivity, transmittance in the shorter wavelength region (>350 nm), and the Tauc-plot-estimated optical bandgap decreased. XPS data indicated that the intensity of In 3d peak compared to Ga 3d peak increased but the intensity of Zn 3d peak compared to Ga 3d decreased, and that, from the deconvoluted O 1s peak, defects or oxygen vacancies and non-quaternary contents increased as the temperature increased. The relative intensity changes of the In, Zn, and O 1s sub-component are suggested to explain the changes in electrical and optical properties.

  • PDF

전기방사법을 이용하여 제조된 Sb-Doped SnO2 투명전도막의 전기적 및 광학적 특성 (Electrical and Optical Properties of Sb-Doped SnO2 Transparent Conductive Films Fabricated by Using Electrospinning)

  • 안하림;구본율;안효진;이태근
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.177-182
    • /
    • 2015
  • Sb-doped $SnO_2$(ATO) thin films were prepared using electrospinning. To investigate the optimum properties of the electrospun ATO thin films, the deposition numbers of the ATO nanofibers(NFs) were controlled to levels of 1, 2, 4, and 6. Together with the different levels of deposition number, the structural, chemical, morphological, electrical, and optical properties of the nanofibers were investigated. As the deposition number of the ATO NFs increased, the thickness of the ATO thin films increased and the film surfaces were gradually densified, which affected the electrical properties of the ATO thin films. 6 levels of the ATO thin film exhibited superior electrical properties due to the improved carrier concentration and Hall mobility resulting from the increased thickness and surface densification. Also, the thickness of the samples had an effect on the optical properties of the ATO thin films. The ATO thin films with 6 deposited levels displayed the lowest transmittance and highest haze. Therefore, the figure of merit(FOM) considering the electrical and optical properties showed the best value for ATO thin films with 4 deposited levels.

X-Ray Absorption Spectroscopic Study of 120 MeV $Ag^{9+}$ Ion-Irradiated N-Doped ZnO Thin Films

  • Gautam, Sanjeev;Lim, Weon Cheol;Kang, Hee Kyung;Lee, Ki Soo;Song, Jaebong;Song, Jonghan;Asokan, K.;Chae, Keun Hwa
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.315-315
    • /
    • 2013
  • We report the electronic structure modification in the swift heavy ion (SHI) irradiated N-doped ZnO thin films prepared by RF sputtering from ZnO target in different ratio of Ar/$N_2$ gas mixture using highly pure $N_2$ gas. The different N-ZnO thin lms were then irradiated with 120 MeV Ag ion beam with different doses ranging from $1{\times}10^{11}$ to $5{\times}10^{12}$ ions/$cm^2$ and characterized by XRD and near edge X-ray absorption ne structure (NEXAFS) at N and O K-edges. The NEXAFS measurements provide direct evidence of O 2p and Zn 3d orbital hybridization and also the bonding of N ions with Zn and O ions. The minimum value of resistivity of $790{\Omega}cm$, a Hall mobility of $22cm^2V^-1s^-1$ and the carrier concentration of $3.6{\times}10^{14}cm^{-3}$ were yielded at 75% $N_2$. X-ray diffraction (XRD) measurements revealed that N-doped ZnO films had the preferential orientation of (002) plane for all samples, while crystallinity start decreasing at 32.5% $N_2$. The average crystallite size varies from 5.7 to 8.2 nm for 75% and then decreases to 7.8 nm for 80% $Ar:N_2$ ratio.

  • PDF

고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향 (Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell)

  • 김도완;이동원;이희수;김승태;박지홍;김용남
    • 한국세라믹학회지
    • /
    • 제48권4호
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

산소 유량별 플라즈마 방출광원 세기에 따른 전자온도 진단과 산화주석박막 특성연구 (Study on Electron Temperature Diagnostic and the ITO Thin Film Characteristics of the Plasma Emission Intensity by the Oxygen Gas Flow)

  • 박혜진;최진우;조태훈;윤명수;권기청
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.92-97
    • /
    • 2016
  • The plasma has been used in various industrial fields of semiconductors, displays, transparent electrode and so on. Plasma diagnostics is critical to the uniform process and the product. We use the electron temperature of the various plasma parameters for the diagnosis of plasma. Generally, the range of the electron temperature which is used in a semiconductor process used the range of 1 eV to 10 eV. The difference of electron temperature of 0.5 eV has a influence in plasma process. The electron temperature can be measured by the electrical method and the optical method. Measurement of electron temperature for various gas flow rates was performed in DC-magnetron sputter and Inductively Coupled Plasma. The physical properties of the thin film were also determined by changing electron temperatures. The transmittance was measured using the integrating sphere, and wavelength range was measured at 300 ~ 1100 nm. We obtain the thin film of the mobility, resistivity and carrier concentration using the hall measurement system. As to the electron temperature increase, optical and electrical properties decrease. We determine it was influenced by the oxygen flow ratio and plasma.

고에너지 볼 밀링이 Skutterudite계 CoSb3의 열전 및 전하 전송 특성에 미치는 영향 (Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite)

  • 남우현;맹은지;임영수;이순일;서원선;이정용
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.852-856
    • /
    • 2015
  • In this study, we investigate the effect of high-energy ball milling on thermoelectric transport properties in double-filled $CoSb_3$ skutterudite ($In_{0.2}Yb_{0.1}Co_4Sb_{12}$). $In_{0.2}Yb_{0.1}Co_4Sb_{12}$ powders are milled using high-energy ball milling for different periods of time (0, 5, 10, and 20 min), and the milled powders are consolidated into bulk samples by spark plasma sintering. Microstructure analysis shows that the high-energy ball milled bulk samples are composed of nano- and micro-grains. Because the filling fractions are reduced in the bulk samples due to the kinetic energy of the high-energy ball milling, the carrier concentration of the bulk samples decreases with the ball milling time. Furthermore, the mobility of the bulk samples also decreases with the ball milling time due to enhanced grain boundary scattering of electrons. Reduction of electrical conductivity by ball milling has a decisive effect on thermoelectric transport in the bulk samples, power factor decreases with the ball milling time.

Cu/In 비에 따른 CuInS2 박막의 특성에 관한 연구 (A Study on Properties of CuInS2 Thin Films by Cu/ln Ratio)

  • 양현훈;박계춘
    • 한국전기전자재료학회논문지
    • /
    • 제20권7호
    • /
    • pp.594-599
    • /
    • 2007
  • [ $CulnS_2$ ] thin films were synthesized by sulfurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furnace annealing at temperature $200^{\circ}C$. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the annealed $200^{\circ}C$ of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and Hall measurement system. The compositional deviations from the ideal chemical formula for $200^{\circ}C$ material can be conveniently described by non-molecularity$({\Delta}x=[Cu/In]-1)$ and non-stoichiometry $({\Delta}y=[{2S/(Cu+3In)}-1])$. The variation of ${\Delta}x$ would lead to the formation of equal number of donor and accepters and the films would behave like a compensated material. The ${\Delta}y$ parameter is related to the electronic defects and would determine the type of the majority charge carriers. Films with ${\Delta}y>0$ would behave as p-type material while ${\Delta}y<0$ would show n-type conductivity. At the sane time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}cm^{-3},\;312.502cm^2/V{\cdot}s\;and\;2.36{\times}10^{-2}\;{\Omega}{\cdot}cm$, respectively.

Al이 도핑된 ZnO 소재의 PLD 박막 두께 변화가 특성에 미치는 영향 (Effect of Thickness on the Properties of Al Doped ZnO Thin Films Deposited by Using PLD)

  • 빈민욱;배기열;박미선;이원재
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.568-573
    • /
    • 2011
  • AZO (Al doped ZnO) thin films were deposited on the quartz substrates with thickness variation from 25 to 300 nm by using PLD (pulsed laser deposition). XRD (x-ray diffractometer), SPM (scanning probe microscopy), Hall effect measurement and uv-visible spectrophotometer were employed to investigate the structural, morphological, electrical and optical properties of the thin films. XRD results demonstrated that films were preferrentially oriented along the c-axis and crystallinity of film was improved with increase of film thickness. As for the surface morphologies, the mean diameter and root mean square of grains were increased as the film thickness was increased. When the film thickness was 200 nm, the lowest resistivity of $4.25{\times}10^{-4}\;{\Omega}cm$ obtained with carrier concentration of $6.84{\times}10^{20}\;cm^{-3}$ and mobility of $21.4\;cm^2/V{\cdot}S$. All samples showed more than 80% of transmittance in the visible range. Upon these results, it is found that the samples thickness can affect their structural, morphological, optical and electrical properties. This study suggests that the resistivity can be improved by controlling film thickness.

Electrical and Optical Properties of P-type Amorphous Oxide Semiconductor Mg:$ZnCo_2O_4$ Thin-Film

  • Lee, Chil-Hyoung;Choi, Won-Kook;Lee, Jeon-Kook;Choi, Doo-Jin;Oh, Young-Jei
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.87-87
    • /
    • 2011
  • Oxide semiconductors are attractive materials for thin-film electronics and optoelectronics due to compatibility with synthesis on large-area, glass and flexible substrate. However, development of thin-film electronics has been hampered by the limited number of semiconducting oxides that are p-type. We report on the effect of the oxygen partial pressure ratio in the gas mixture on the electrical and optical properties of spinel Mg:$ZnCo_2O_4$ thin films deposited at room temperature using RF sputtering, that exhibit p-type conduction. The thin-films are deposited at room temperature in a background of oxygen using a polycrystalline Mg:$ZnCo_2O_4$ ablation target. The p-type conduction is confirmed by positive Seebeck coefficient and positive Hall coefficient. The electrical resistivity and carrier concentration in on dependent Mg:$ZnCo_2O_4$ thin films were found to be dependent on the oxygen partial pressure ratio. As a result, it is revealed that the Mg:$ZnCo_2O_4$ thin-films were greatly influenced on the electrical and optical properties by the oxygen partial pressure condition. The visible region of the spectrum of 36~85%, and hole mobility of 1.1~3.7 $cm^2$/Vs, were obtained.

  • PDF

단결정 산화아연 나노선의 기초 물성 연구 (Study on Basic Properties of Single Crystalline ZnO Nanowire)

  • 라현욱;리즈완 칸;김진태;여찬혁;임연호
    • 한국진공학회지
    • /
    • 제18권4호
    • /
    • pp.259-265
    • /
    • 2009
  • 본 연구에서는 열증착법을 이용하여 합성된 단결정의 산화아연 나노선들을 이용하여 전계효과트랜지스터를 제작하여 광학, 표면반응 및 전기화학적인 거동들에 대한 기초 연구들을 수행하였다. 100 nm의 지름과 길이 5 um 길이를 갖는 단결정 산화아연나노선의 전자 농도와 이동도는 각각 $1.30{\times}10^{18}cm^{-3}$$15.6cm^2V^{-1}s^{-1}$이었으며, 자외선을 나노선에 조사한 경우 약 400배 정도 전류가 증가하였다. 또한 나노선들은 여러 농도의 수소와 일산화탄소에 대해 잘 알려진 표면반응으로 기인한 기체 감지 특성을 보였고, 0.1 M NaCl 전해질 내에서 전형적인 산화아연의 나노선의 전기적 특성을 유지함을 확인하였다.