DOI QR코드

DOI QR Code

Study on Basic Properties of Single Crystalline ZnO Nanowire

단결정 산화아연 나노선의 기초 물성 연구

  • Ra, H.W. (School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Khan, R. (School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Kim, J.T. (School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Yeo, C.H. (School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Im, Y.H. (School of Semiconductor and Chemical Engineering, Chonbuk National University)
  • 라현욱 (전북대학교 반도체화학공학부) ;
  • 리즈완 칸 (전북대학교 반도체화학공학부) ;
  • 김진태 (전북대학교 반도체화학공학부) ;
  • 여찬혁 (전북대학교 반도체화학공학부) ;
  • 임연호 (전북대학교 반도체화학공학부)
  • Published : 2009.07.30

Abstract

We fabricated the field effect transistor using single crystalline ZnO nanowires synthesized by a conventional thermal evaporation method and investigated their basic properties under the various conditions such as ultraviolet irradiation, reducing gas and electrolyte. The typical carrier concentration and mobility of the single crystalline ZnO nanowire with a diameter of 100 nm and length of 5 um were $1.30{\times}10^{18}cm^{-3}$ and $15.6cm^2V^{-1}s^{-1}$, respectively. The current of ZnO nanowire under ultraviolet irradiation significantly increased about 400 times higher as compared to in the darkness. In addition, the ZnO nanowire showed typical sensing characteristics for $H_2$ and CO due to well-known surface reactions and typical current-voltage characteristics under the 0.1 M NaCl electrolyte.

본 연구에서는 열증착법을 이용하여 합성된 단결정의 산화아연 나노선들을 이용하여 전계효과트랜지스터를 제작하여 광학, 표면반응 및 전기화학적인 거동들에 대한 기초 연구들을 수행하였다. 100 nm의 지름과 길이 5 um 길이를 갖는 단결정 산화아연나노선의 전자 농도와 이동도는 각각 $1.30{\times}10^{18}cm^{-3}$$15.6cm^2V^{-1}s^{-1}$이었으며, 자외선을 나노선에 조사한 경우 약 400배 정도 전류가 증가하였다. 또한 나노선들은 여러 농도의 수소와 일산화탄소에 대해 잘 알려진 표면반응으로 기인한 기체 감지 특성을 보였고, 0.1 M NaCl 전해질 내에서 전형적인 산화아연의 나노선의 전기적 특성을 유지함을 확인하였다.

Keywords

References

  1. A. M. Marales and C. M. Lieber, Science 279, 208 (1998) https://doi.org/10.1126/science.279.5348.208
  2. Y. H. Im, C. S. Lee, R. P. Vasquez, M. A. Bangar, N. V. Myung, E. J. Menke, R. M. Penner, and M. H. Yun, Small 2, 356 (2006) https://doi.org/10.1002/smll.200500365
  3. M. Curreli, R. Zhang, F. N. Ishikawa, H.-H. Chang, R. J. Cote, C. Zhou, and M. E. Thomspon, IEEE Trans. Nanobiosci. 7, 651 (2008)
  4. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003) https://doi.org/10.1002/adma.200304889
  5. C. Li, M. Curreli, H. Lin, B. Kei, F. N. Ishikawa, R. Datar, R. J. Cote, M. E. Thompson, and C. Zhou, J. AM, CHEM. SOC. 127, 12484 (2005) https://doi.org/10.1021/ja053761g
  6. 신용호, 박영환, 김용민, 한국진공학회지 16, 4호, 286 (2007) https://doi.org/10.5757/JKVS.2007.16.4.286
  7. 박종성, 송오성, 한국진공학회지, 17, 6호, 538 (2008) https://doi.org/10.5757/JKVS.2008.17.6.538
  8. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, Mater. Sci. Eng. R 47, 1 (2004) https://doi.org/10.1016/j.mser.2004.09.001
  9. H. M. Cheng, H. C. Hsu, Y. K. Tseng, L. J. Lin, and W. F. Hsieh, J. Phys. Chem. B 109, 8749 (2005) https://doi.org/10.1021/jp0442908
  10. H.-W. Ra, K. S. Choi, J. H. Kim, Y. B. Hahn, and Y. H. Im, Small 4, 1105 (2008) https://doi.org/10.1002/smll.200700922
  11. A. B. Djurisic and Y. H. Leung, Small 2, 944 (2006) https://doi.org/10.1002/smll.200600134
  12. H.-W. Ra, K. S. Choi, C. W. Ok, S. Y. Jo, K. H. Bai, and Y. H. Im, Appl. Phys. Lett. 93, 033112 (2008) https://doi.org/10.1063/1.2965109
  13. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002) https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W

Cited by

  1. Study on Basic Properties of Single Crystalline ZnO Nanowire vol.18, pp.4, 2009, https://doi.org/10.5757/JKVS.2009.18.4.259
  2. Optical Properties of Al and Al2O3Coated ZnO Nanorods vol.19, pp.5, 2010, https://doi.org/10.5757/JKVS.2010.19.5.385