• Title/Summary/Keyword: Carrier concentration and mobility

Search Result 258, Processing Time 0.026 seconds

Structural, Optical, and Electrical Properties of IGZO Thin Film Sputtered with Various RF Powers (RF 파워 변화에 따른 IGZO 박막의 구조적, 광학적, 전기적 특성)

  • Jin, Chang-Hyun;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.620-624
    • /
    • 2015
  • We have studied structural, optical and electrical properties of In-Ga-doped ZnO (IGZO) thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 30, 50, 70, and 90 W respectively. All of the IGZO thin films transmittance in the visible range (400 nm ~ 800 nm) was above 83%. XRD analysis showed the IGZO thin films amorphous structure of the thin films without any peak. And also IGZO thin film have low resistivity ($1.99{\times}10^{-3}{\Omega}cm$), high carrier concentration ($6.4{\times}10^{20}cm^{-3}$), and mobility ($10.3cm^2V^{-1}s^{-1}$). By the studies we found that IGZO transparent thin film can be used as optoelectronic material and introduced application possibility for future electronic devices.

Optimization of Spark Plasma Sintering Temperature Conditions for Enhancement of Thermoelectric Performance in Gas-Atomized Bi0.5Sb1.5Te3 Compound

  • Jeong, Kwang-yong;Lee, Chul Hee;Dharmaiah, Peyala;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.108-114
    • /
    • 2017
  • We fabricate fine (<$20{\mu}m$) powders of $Bi_{0.5}Sb_{1.5}Te_3$ alloys using a large-scale production method and subsequently consolidate them at temperatures of 573, 623, and 673 K using a spark plasma sintering process. The microstructure, mechanical properties, and thermoelectric properties are investigated for each sintering temperature. The microstructural features of both the powders and bulks are characterized by scanning electron microscopy, and the crystal structures are analyzed by X-ray diffraction analysis. The grain size increases with increasing sintering temperature from 573 to 673 K. In addition, the mechanical properties increase significantly with decreasing sintering temperature owing to an increase in grain boundaries. The results indicate that the electrical conductivity and Seebeck coefficient ($217{\mu}V/K$) of the sample sintered at 673 K increase simultaneously owing to decreased carrier concentration and increased mobility. As a result, a high ZT value of 0.92 at 300 K is achieved. According to the results, a sintering temperature of 673 K is preferable for consolidation of fine (<$20{\mu}m$) powders.

Electrical properties of the Al doped ZnO thin films fabricated by RF magnetron sputtering system with working pressure and oxygen contents (RF magnetron sputtering법으로 제조한 Al doped ZnO 박막의 산소함량과 압력변화에 따른 전기적 특성 변화)

  • Kim, Jong-Wook;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.77-81
    • /
    • 2010
  • The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering and effects of working pressure and oxygen contents on the electrical properties were investigated. XRD spectra showed a preferred orientation along the c-axis and a minimum FWHM for the 70mTorr. From the surface analysis (AFM), the number of crystal grain of AZO thin film increased as working pressure increased. The film deposited with 70mTorr of working pressure showed n-type semiconductor characteristic having suitable resistivity $-1.59{\times}10^{-2}{\Omega}cm$, carrier concentration $-10.1{\times}10^{19}cm^{-3}$, and mobility $-4.35cm^2V^{-1}s^{-1}$ while other films by 7 mTorr, 20 mTorr of working pressure closed to metallic films. The films including the oxygen represent stoichiometric composition similar to the oxide. The transmittance of the film was over 85% in the visible light range regardless of the changes in working pressure and oxygen contents.

A study on the InP single crystal growth by modified SSD method (변형된 SSD법에 의한 InP 단결정 성장에 관한 연구)

  • Song, Bok-Sik;Moon, Dong-Chan;Kim, Seon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.803-805
    • /
    • 1992
  • The InP single crystals were grown by Modified Synthesis Solute Diffusion (SSD) method and its properties were investigated. The crystal growth rate and lattice constant $a_{\circ}$ of the grown crystals were 1.8mm/day, 5.867${\AA}$ respectively. Etch pits density along growth direction of crystal had nearly uniformity' about (2-6)x10 $cm^{-2}$ from first freeze part to last freeze part. The carrier concentration, mobility and resistivity varied from 6.25 x $10^{15}cm^{-3}$, 4218 $cm^{2}$/V sec and 1.38 x $10^{-1}{\Omega}^{-cm}$ at the first freeze part to 8.8x$10^{-3}cm^{-3}$, 4012 $cm^{2}$/V.sec and 1.43 X $10^{-1}{\Omega}^{-cm}$ at the last freeze part. In the photoluminescence at 10K, the radiation transitions were observed by the near band edge recombination, D-A pair recombination and its phonon replica in the undoped InP.

  • PDF

Study on the Properties of ZnO:Ga Thin Films with Substrate Temperatures (기판 온도에 따른 ZnO:Ga 박막의 특성)

  • Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.794-799
    • /
    • 2017
  • Ga-doped ZnO (GZO) films were deposited by an RF magnetron sputtering method on glass substrates using ZnO as a target containing 5 wt% $Ga_2O_3$ powder (for Ga doping). The structural, electrical, and optical properties of the GZO thin films were investigated as a function of the substrate temperatures. The deposition rate decreased with increasing substrate temperatures from room temperature to $350^{\circ}C$. The films showed typical orientation with the c-axis vertical to the glass substrates and the grain size increased up to a substrate temperature of $300^{\circ}C$ but decreased beyond $350^{\circ}C$. The resistivity of GZO thin films deposited at the substrate temperature of $300^{\circ}C$ was $7{\times}10^{-4}{\Omega}cm$, and it showed a dependence on the carrier concentration and mobility. The optical transmittances of the films with thickness of $3,000{\AA}$ were above 80% in the visible region, regardless of the substrate temperatures.

The Micro Bubble Effect in the Seed Adhesion on the Crystal Quality of 6H-SiC grown by a Physical Vapor Transport (PVT) Process (종자정 부착 시 생성되는 마이크로 기공이 PVT법에 의하여 성장시킨 6H-SiC 결정질에 미치는 영향)

  • Kim, Jung-Gon;Kim, Jung-Gyu;Son, Chang-Hyun;Choi, Jung-Woo;Hwang, Hyun-Hee;Lee, Won-Jae;Kim, Il-Soo;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.222-226
    • /
    • 2008
  • With different seed adhesion methods, we obtained two different aspects with or without micro-bubble in the interface between a seed and a dense graphite seed holder. To improve the quality of SiC wafer, we introduced a sucrose caramelizing step at the seed adhesion using the sucrose, The n-type 2 inch single crystal exhibiting the polytype of 6H-SiC were successfully fabricated and carrier concentration levels of about $10^{16}/cm^3$ was determined from Hall measurements, As compared to the characteristics of SiC crystal grown with micro-bubble in the interface between the seed and the dense graphite seed holder, the SiC crystal grown without micro-bubble definitely exhibited lower resistivity, lower micropipe density and higher mobility relatively.

Effect of RF Power on the Structural, Optical and Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착한 비정질 InGaZnO 박막의 구조적, 광학적, 전기적 특성에 미치는 RF 파워의 영향)

  • Shin, Ji-Hoon;Cho, Young-Je;Choi, Duck-Kyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • To investigate the effect of RF power on the structural, optical and electrical properties of amorphous InGaZnO (a-IGZO), its thin films and TFTs were prepared by RF magnetron sputtering method with different RF power conditions of 40, 80 and 120 W at room temperature. In this study, as RF power during the deposition process increases, the RMS roughness of a-IGZO films increased from 0.26 nm to 1.09 nm, while the optical band-gap decreased from 3.28 eV to 3.04 eV. In the case of the electrical characteristics of a-IGZO TFTs, the saturation mobility increased from $7.3cm^2/Vs$ to $17.0cm^2/Vs$, but the threshold voltage decreased from 5.9 V to 3.9 V with increasing RF power. It is regarded that the increment of RF power increases the carrier concentration of the a-IGZO semiconductor layer due to the higher generation of oxygen vacancies.

A Study on the Optical Property of Al-N-codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.319-320
    • /
    • 2009
  • In this study, high-quality Al-N doped p-type ZnO thin films were deposited on n-type Si (100) wafer or Si coated with buffer layer by DC magnetron sputtering in the mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin film showed higher carrier concentration $2.93\times10^{17}cm^{-3}$, lower resistivity of $5.349\;{\Omega}cm$ and mobility of $3.99\;cm^2V^{-1}S^{-1}$, respectively. According to PL spectrum, the Al donor energy level depth ($E_d$) of Al-N codoped p-type ZnO film was reduced to about 51 meV, and the N acceptor energy level depth ($E_a$) was reduced to 63 meV, respectively.

  • PDF

The characteristics of the sulfur-doped $In_{1-x}Ga_xP$ Light emitting diode (Sulfur를 첨가한 $In_{1-x}Ga_xP$의 발광 다이오드 특성)

  • Cho, M.W.;Moon, D.C.;Kim, S.T.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.168-171
    • /
    • 1988
  • The p-n homo junction diode of the III-V ternary alloy semiconductor $In_{1-x}Ga_xP$ : S grown by the temperature gradient solution (TGS) was fabricated by Zn-diffusion, and it's characteristics was investigated. The carrier concentration of $In_{1-x}Ga_xP$ doped with sulfur, 0.5 mol %, was $1{\times}10^{17}cm^{-3}$ and the mobility was varied with the composition. In the case that the diffusion time was constant as 30 minutes. The temperature dependence of diffusion coefficient was decreased from D= $4.2{\times}10^{-5}$ exp (-1.74/$k_{B}T$) to D= $2.5{\times}10^{-5}$ exp (-3.272/$k_{B}T$) with increasing of composition $\times$ from 0.43 to 0.98. The major peak of E.L spectrum was due to D-A pair recombination and the peak intensity was increased with the increasing of input current. And the E.L intensity was decreased with the increasing temperature, and shift to the long wavelength. The luminescence efficiencies measured at $5^{\circ}C$, atmosphere temperature, was decreased from $2.6{\times}10^{-4}$% to $9.49{\times}10^{-6}$ % with increasing of composition it from 0.39, direct transition region, to 0.98, indirect transition region.

  • PDF

Characteristics of MOVPE Grown HgCdTe on GaAs and CdZnTe Substrates (GaAs 및 CdZnTe기판위에 MOVPE 법으로 성장된 HgCdTe 박막의 특성)

  • 김진상;서상희
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2001
  • HgCdTe films were grown on the (100). (111), (211) CdZnTe, and (100) GaAs substrates by metal organic chemical vapor epitaxy. We have investigated the surface morphology, electrical properties, crystalline qualities, and composition of HgCdTe with substrates orientation. Three dimensional facet growth was occurred on (111) CdZnTe substrate. The crystalline quality of HgCdTe on (100) CdZnTe was superior to that of HgCdTe on (100) GaAs. FWHM values of double crystal x-ray diffraction of HgCdTe on (100) CdZnTe and (100) GaAs were 55 and 125arcsec, respectively. HgCdTe on GaAs substrate showed n-type conductivity with high mobility, however, HgCdTe on CdZnTe showed p-type conductivity with carrier concentration of higher than 10/sup 16/㎤.

  • PDF