• Title/Summary/Keyword: Carbonic Anhydrase (CA)

Search Result 32, Processing Time 0.026 seconds

Detection of Carbonic Anhydrase in the Gills of Rainbow Trout (Oncorhynchus mykiss) (무지개 송어 rainbow trout, Oncorhynchus mykiss의 아가미에서의 carbonic anhydrase의 존재)

  • Kim, Soo Cheol;Choi, Kap Seong;Kim, Jung Woo;Choi, Myeong Rak;Han, Kyeong Ho;Lee, Won Kyo;Kho, Kang Hee
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1557-1561
    • /
    • 2013
  • Carbonic anhydrase isozymes are a widespread, zinc-containing metalloenzyme family. The enzyme catalyzes the reversible inter-conversion of $CO_2$ and $HCO_3$. This reaction is the main role played by CA enzymes in physiological conditions. This enzyme has been found in virtually all organisms, and at least 16 isozymes have been isolated in mammals. Unlike mammals, there is little information available regarding CA isozymes in the tissues of non-mammalian groups, such as fish. Carbonic anhydrase is very important in the osmotic and acid-base regulation in fish. It is well-known that the gills of fish play the most important role in acid-base relevant ion transfer, the transfer of $H^+$ and/or $HCO_3^-$, for the maintenance of systemic pH. Rainbow trout, Oncorhynchus mykiss, is the most important freshwater fish species in the aquaculture industry of Korea, with annual production increasing each year. In addition, environmental toxicology research has shown that rainbow trout is known to be the species that is most susceptible to environmental toxins. Consequently, carbonic anhydrase was detected in rainbow trout, Oncorhynchus mykiss. The isolated protein showed the specific band with a molecular weight of 30 kDa and pI of 7.0, and it was identified as being carbonic anhydrase. The immunohistochemical result demonstrated that the carbonic anhydrase was located in the epithelial cells of the gills.

Comparison of hemocytic carbonic anhydrase activity of bivalves

  • Cho, Sang-Man;Jeong, Woo-Geon;Choi, Young-Joon
    • The Korean Journal of Malacology
    • /
    • v.32 no.1
    • /
    • pp.63-65
    • /
    • 2016
  • Carbonic anhydrase (CA), which is involved in shell formation processes in bivalves, is one of the major biocatalysts for carbon capture and storage. In this study we investigated CA activity in the total hemocytic proteins of five bivalves. The highest CA activity was observed in Scapharca broughtonii, which had more than twice the activity found in Crassostrea gigas. No CA activity was observed among the total hemocytic proteins of Pinctada fucata and Saxidomus purpuratus. The results suggest that marine invertebrates may provide a better source of CA, as an alternative to mammalian sources.

EFFECTS OF CARBONIC ANHYDRASE INHIBITORS ON THE LPS-INDUCED BONE RESORPTION IN VITRO (Carbonic Anhydrase Inhibitors가 Lipopolysaccharide에 의해 유도된 골흡수에 미치는 영향)

  • Park, Yang-Ho;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.115-123
    • /
    • 1994
  • To study bone resorption mechanism, effect of LPS on the $^{45}Ca$ release from fetal rat ulnae and radii, and effects of carbonic anhydrase inhibitors on the LPS-induced bone resorption in organ culture were studied. Ulnae and radii were removed from 19 day old fetal rats, prelabelled by subcutaneous injection of $200{\mu}Ci\;^{45}CaCl_2$ into their mother on the 17th day of gestation. Radioactivities of $^{45}Ca$ released into media were determined after 24, 48 and 72 hours. Effects of LPS and carbonic anhydrase inhibitors were observed by the ratio of $\%$ release of $^{45}Ca$ between paired control and experimental group. The observed results were as follows : 1. $LPS(1{\mu}g/ml)$ supplemented in media for 72hours increased the $^{45}Ca$ release significantly after 48 and 72 hours of culture and $LPS(10{\mu}g/m1)$ increased the $^{45}Ca$ release significantly after 72 hours of culture. 2. LPS-induced $^{45}Ca$ release was not inhibited significantly by 1mM sulfanilamide but inhibited significantly by 10mM sulfanilamide after 48 and 72 hours of culture. 3. LPS-induced $^{45}Ca$ release was not inhibited significantly by 0.1mM dichlorphenamide but inhibited significantly by 1mM dichlorphenamide after 48 and 72 hours of culture. 4. LPS-induced $^{45}Ca$ release was not inhibited significantly by 1mM acetazolamide but inhibited sighificantly by 5mM acetazolamide after 72 hours of culture.

  • PDF

Enhanced Production of Succinic Acid by Actinobacillus succinogenes using the Production Medium Supplemented with Recombinant Carbonic Anhydrases (재조합 탄산무수화 효소 첨가 생산배지를 이용한 Actinobacillus succinogenes 유래의 숙신산 생산성 향상)

  • Park, Sang-Min;Eum, Kyuri;Kim, Sangyong;Jeong, Yong-Seob;Lee, Dohoon;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • Succinic acid, a representative biomass-derived platform chemical, is a major fermentation product of Actinobacillus succinogenes. It is well known that carbon dioxide is consumed during the succinate fermentation, but the biochemical mechanism behind this phenomenon is not yet understood well. In this study, it was found that the addition of carbonic anhydrase (CA)s into media significantly enhances the succinic acid production by A. succinogenes during the fermentation supplied with carbon dioxide. It is likely that the (bi) carbonate produced by the CA activity from gaseous carbon dioxide is favoured by A. succinogenes for consumption and utilization. Therefore, the $MgCO_3$ requirement could be significantly reduced without compromising the succinate productivity. Furthermore, because of too high price of the commercial carbonic anhydrase, it was undertaken to economically overproduce a cyanobacterial carbonic anhydrase by the use of a recombinant Pichia pastoris. An expression vector system was constructed with the carbonic anhydrase gene PCR-cloned from Cyanobacterium Synechocystis sp., and introduced into P. pastoris for fermentation studies. About 95.9 g/L of succinic acid was produced in the production medium with 30 ppm of carbonic anhydrase, approximately 2 fold higher productivity compared to the parallel process with no supplementation of the enzyme. It is expected that this method can provide a valuable way of overcoming inefficiencies inherent in gas supply during $CO_2$-based bioprocesses like succinic acid fermentation.

Presence of Carbonic Anhydrase III-like Protein in Shaggy Sea Raven, Hemitripterus villosus (삼세기(Shaggy sea raven, Hemitripterus villosus)의 carbonic anhydrase III에 관한 연구)

  • Kweon, Rok Eun;Kho, Kang Hee
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.186-190
    • /
    • 2014
  • Carbonic anhydrase isozymes (CAs) are widespread zinc-containing metalloenzyme family. The enzyme catalyzes the reversible interconversion of $CO_2$ and $HCO_3$. This reaction is the main role of CA enzymes in physiological conditions. CA III, one of the CA isozymes, has been identified in many tissues. It is distinguished from the other isozymes by several characteristics, particularly by a lower specific activity and by its resistance to acetazolamide. However, the physiological function of CA III in fish is unknown. In this study, we examined the detection of CAs in the Shaggy sea raven Hemitripterus villosus, using SDS-PAGE, isoelectric focusing (IEF), and western blot analysis. We detected a significant protein band with molecular weight about 30 kDa from the tissues of H. villosus by SDS-PAGE and western blotting. A specific band of CA III with pI 7.0 was detected by IEF and western blotting in gill and muscle. The immunoreaction of anti-CA III expressed in the gill of H. villosus was much stronger than other tissues. One explanation for this result is that the fish gill is the only organ that is exposed to the external environment and that plays an important role in acid-base relevant ion transfer, the transfer of $H^+$ and/or $HCO{_3}^-$, for the maintenance of systemic pH. This is the first report on the identification of a carbonic anhydrase III-like protein from H. villosus.

Two Flavonoid-Based Compounds from Murraya paniculata as Novel Human Carbonic Anhydrase Isozyme II Inhibitors Detected by a Resazurin Yeast-Based Assay

  • Sangkaew, Anyaporn;Samritsakulchai, Nawara;Sanachai, Kamonpan;Rungrotmongkol, Thanyada;Chavasiri, Warinthorn;Yompakdee, Chulee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.552-560
    • /
    • 2020
  • Human carbonic anhydrase (CA) isozyme II has been used as protein target for disorder treatment including glaucoma. Current clinically used sulfonamide-based CA inhibitors can induce side effects, and so alternatives are required. This study aimed to investigate a natural CA inhibitor from Murraya paniculata. The previously developed yeast-based assay was used to screen 14 compounds isolated from M. paniculata and identified by NMR analysis for anti-human CA isozyme II (hCAII) activity. Cytotoxicity of the compounds was also tested using the same yeast-based assay but in a different cultivation condition. Two flavonoid candidate compounds, 5, 6, 7, 8, 3', 4', 5'-heptamethoxyflavone (4) and 3, 5, 7, 8, 3', 4', 5'-heptamethoxyflavone (9), showed potent inhibitory activity against hCAII with a minimal effective concentration of 10.8 and 21.5 μM, respectively, while they both exhibited no cytotoxic effect, even at the highest concentration tested (170 μM). The results from an in vitro esterase assay of the two candidates confirmed their hCAII inhibitory activity with IC50 values of 24.0 and 34.3 μM, respectively. To investigate the potential inhibition mechanism of compound 4, in silico molecular docking was performed using the FlexX and SwissDock software. This revealed that compound 4 coordinated with the Zn2+ ion in the hCAII active site through its methoxy oxygen at a distance of 1.60 Å (FlexX) or 2.29 Å (SwissDock). The interaction energy of compound 4 with hCAII was -13.36 kcal/mol. Thus, compound 4 is a potent novel flavonoid-based hCAII inhibitor and may be useful for further anti-CAII design and development.

Carbon Dioxide Sequestration of Enzyme Covalently Immobilized on Porous Membrane (공유결합으로 다공성 막에 고정화된 효소에 의한 이산화탄소 포집)

  • Park, Jin-Won
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.225-229
    • /
    • 2013
  • Bovine Carbonic anhydrase (BCA) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of carbon-dioxide saturated solution with buffer were monitored with respect to time to calculate the catalytic activities of hydration of carbon-dioxide for free and immobilized CA. The catalytic rate constant values for free CA, immobilized CA on polystyrene nanoparticles, and immobilized CA on a porous cellulose acetate membrane were 0.79, 0.67, and 0.56 $s^{-1}$, respectively. Reusability was studied up to 10 cycles of $CO_2$ sequestration. The activity for the CA immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the CA on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the CA immobilized the membrane had the least loss rate of the activity compared to the others. From this study, the porous membrane was feasible as a carrier for the CA immobilization in hydration and sequestration of carbon-dioxide.

CHANGES IN CONTENTS AND LOCALIZATIONS OF CARBONIC ANHYDRASE II, PROCHYMOSIN AND PEPSINOGEN IN ABOMASAL MUCOSAE DURING LONG TERM MILK FEEDING GOATS

  • Amasaki, H.;Gozawa, S.;Shimomura, Y.;Akuzawa, R.;Suzuki, K.;Daigo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.527-532
    • /
    • 1992
  • The present paper describes temporal changes of immunohistochemical localization and quantities of carbonic anhydrase isozyme II (CA-II) prochymosin (PC) and pepsinogen (PN) in goat's abomasal mucosae during long term milk feeding. The CA-II was not detected by day 14 after birth and then became positive on day 34 in the parietal cells, suggesting that the excretion of the hydrochloric acid (HCl) begins between days 14 and 34 under a feeding condition without solid materials. The quantity of the PC in the gastric chief cells detected by the ELISA showed rapid increase from the day of birth, making a peak on day 8 and then gradually decreased with age. The decrease in quantity of PC became started during the time period when HCl excretion had not started yet. The quantities of PN in the gastric chief cells were almost stable during the whole period examined. Expressions of these gastric enzymes did not seem to be regulated by the change of feeding condition.

Carbonic Anhydrase Mimicry for Carbon Dioxide Fixation and Calcium Carbonate Mineralization (탄산탈수효소 모사를 이용한 이산화탄소 고정화 및 탄산칼슘 합성)

  • Sahoo, Prakash C.;Jang, Young Nam;Chae, Soo Chun;Lee, Seung Woo
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.201-208
    • /
    • 2013
  • Copper (II) and Nickel (II) mimic complexes of enzyme carbonic anhydrase were evaluated under ambient condition for carbon dioxide capture and conversion process. The synthesized complexes were characterized by ATR-FTIR and UV-DR spectroscopy. It was found that all the complexes have biomimetic activity towards $CO_2$ using para-nitrophenyl acetate (p-NPA) hydrolysis as the model reaction. Interestingly, the proper geometry obtained by the restricted orientation of tripodal N atoms in Cu (II) complex of 2,6-bis(2-benzimidazolyl) pyridine showed the highest activity (1.14 au) compared to others. The $CO_2$ bio-mineralization to $CaCO_3$ was carried out via in-vitro crystallization approach. Results indicate that the biomimetic complexes have a role in determining $CaCO_3$ morphology. The present observations establish a qualitative insight for the design of improved small-molecule catalysts for carbon capture.

Biomimetic sequestration of $CO_2$ and reformation to $CaCO_3$ using bovine carbonic anhydrase immobilized on SBA-15 (생체모방공학을 이용한 bovine carbonic anhydrase를 SBA-15에 고정화하여 이산화탄소분리와 재구성된 $CaCO_3$ 연구)

  • Vinoba, Mari;Kim, Dae-Hoon;Lim, Kyoung-Soo;Jeong, Soon-Kwan;Alagar, Muthukaruppan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.495-499
    • /
    • 2010
  • The biocatalytic capture of $CO_2$, and its precipitationas $CaCO_3$, over bovine carbonic anhydrase (BCA) immobilized on a pore-expanded SBA-15 support was investigated. SBA-15 was synthesized using TMB as a pore expander, and the resulting porous silica was characterized by XRD, BET, IR, and FE-SEM analysis. BCA was immobilized on SBA-15 through various approaches, including covalent attachment (BCA-CA), adsorption (BCA-ADS), and cross-linked enzyme aggregation (BCA-CLEA). The immobilization of BCA on SBA-15 was confirmed by the presence of zinc metal in the EDXS analysis. The effects of pH, temperature, storage stability, and reusability on the biocatalytic performance of BCA were characterized by examining para-nitrophenyl acetate (p-NPA) hydrolysis. The $K_{cat}/K_m$ values for p-NPA hydrolysis were 740.05, 660.62, and $680.11M^{-1}s^{-1}$, respectively, where as $K_{cat}/K_m$ for free BCA was $873.76M^{-1}s^{-1}$. The amount of $CaCO_3$ precipitate was measured quantitatively using anion-selective electrode and was found to be 12.41, 11.82, or 11.28 mg $CaCO_3$/mg for BCA-CLEA, BCA-ADS, or BCA-CA, respectively. The present results indicate that the immobilized BCA-CLEA, BCA-ADS, and BCA-CA are green materials, and are tunable, reusable, and promising biocatalysts for $CO_2$ sequestration.

  • PDF