Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.3.155

Enhanced Production of Succinic Acid by Actinobacillus succinogenes using the Production Medium Supplemented with Recombinant Carbonic Anhydrases  

Park, Sang-Min (College of Biomedical Science, Kangwon National University)
Eum, Kyuri (College of Biomedical Science, Kangwon National University)
Kim, Sangyong (Korea Institute of Industrial Technology)
Jeong, Yong-Seob (Department of Food Science and Technology, Chunbuk National University)
Lee, Dohoon (Korea Institute of Industrial Technology)
Chun, Gie-Taek (College of Biomedical Science, Kangwon National University)
Publication Information
KSBB Journal / v.29, no.3, 2014 , pp. 155-164 More about this Journal
Abstract
Succinic acid, a representative biomass-derived platform chemical, is a major fermentation product of Actinobacillus succinogenes. It is well known that carbon dioxide is consumed during the succinate fermentation, but the biochemical mechanism behind this phenomenon is not yet understood well. In this study, it was found that the addition of carbonic anhydrase (CA)s into media significantly enhances the succinic acid production by A. succinogenes during the fermentation supplied with carbon dioxide. It is likely that the (bi) carbonate produced by the CA activity from gaseous carbon dioxide is favoured by A. succinogenes for consumption and utilization. Therefore, the $MgCO_3$ requirement could be significantly reduced without compromising the succinate productivity. Furthermore, because of too high price of the commercial carbonic anhydrase, it was undertaken to economically overproduce a cyanobacterial carbonic anhydrase by the use of a recombinant Pichia pastoris. An expression vector system was constructed with the carbonic anhydrase gene PCR-cloned from Cyanobacterium Synechocystis sp., and introduced into P. pastoris for fermentation studies. About 95.9 g/L of succinic acid was produced in the production medium with 30 ppm of carbonic anhydrase, approximately 2 fold higher productivity compared to the parallel process with no supplementation of the enzyme. It is expected that this method can provide a valuable way of overcoming inefficiencies inherent in gas supply during $CO_2$-based bioprocesses like succinic acid fermentation.
Keywords
Succinic acid; Actinobacillus succinogenes; Carbonic anhydrase; Carbon dioxide; Carbonate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gibbons, B. H. and J. T. Edsall (1963) Rate of hydration of carbon dioxide and dehydration of carbonic acid at 25 degrees. J. Biol. Chem. 238: 3502-3507.
2 Bergmann, F., S. Rimon, and R. Segal (1958) Effect of pH on the activity of eel esterase towards different substrates. J. Biochem. 68: 493-499.   DOI
3 Wilbur, K. M. and N. G. Anderson (1948) Electrometric and colorimetric and determination of carbonic anhydrase. J. Biol. Chem. 176: 147-154.
4 McKinlay, J. B., J. G. Zeikus, and C. Vieille (2005) Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651- 6656.   DOI   ScienceOn
5 Song, H. and S. Y. Lee (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 39: 352-361.   DOI   ScienceOn
6 So, A. K. C. and G. S. Espie (1998) Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC 6803. Plant Mol. Biol. 37: 205-215.   DOI   ScienceOn
7 Schmetterer, G. (1994) Cyanobacterial respiration. In The molecular biology of cyanobacteria. Springer Netherlands. The Mol. Biol. of Cyanobacteria 1: 409-435.
8 Kupriyanova, E. V., M. A. Sinetova, A. G. Markelova, S. I. Allakhverdiev, D. A. Los, and N. A. Pronina (2011) Extracellular $\beta$-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. J. Photochem. Photobiol. 103: 78-86.   DOI   ScienceOn
9 Badger, M. R. and G. D. Price (1994) The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Bio. 45: 369-392.   DOI   ScienceOn
10 Silverman, D. N. (1991) The catalytic mechanism of carbonic anhydrase. Can. J. Bot. 69: 1070-1078.   DOI
11 Sultemeyer, D., C. Schmidt, and H. P. Fock (1993) Carbonic anhydrase in higher plants and aquatic microorganisms. Physiol. Plant. 88: 179-190.   DOI   ScienceOn
12 Suzuki, E., Y. Shiraiwa, and S. Miyachi (1994) The cellular and molecular aspects of carbonic anhydrase in photosynthetic microorganisms. Prog. Phycol. Res. 10: 2-54.
13 Tashian, R. E. (1989) The carbonic anhydrase: widening perspectives on their evolution, expression and function. Bioessays. 10: 186-192.   DOI
14 Wang, D., Q. Lia, W. Lia, J. Xinga, and Z. Su (2009) Improvement of succinate production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme Microb. Technol. 45: 491-497.   DOI   ScienceOn
15 Dagert, M. and S. Ehrlich (1979) Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6: 23-28.   DOI   ScienceOn
16 Arjmand, S., E. Bidram, A. S. Lotfi, M. Shamsara, and S. J. Mowla (2011) Expression and Purification of Functionally Active Recombinant Human Alpha 1-Antitrypsin in Methylotrophic Yeast Pichia pastoris. J. Med. Biotechnol. 3: 127-134.
17 Jahic, M., A. Veide, T. Charoenrat, T. Teeri, and S. O. Enfors (2006) Process Technology for Production and Recovery of Heterologous Proteins with Pichia pastoris. Biotechnol. Prog. 22: 1465-1473.   DOI
18 Zeikus, J. G., M. K. Jain, and P. Elankovan (1999) Biotechnology of succinic acid production and markets for derived industrial products. APPl. Microbiol. Biotechnol. 51: 545-552.   DOI   ScienceOn
19 McKinlay, J. B., J. G. Zeikus, and C. Vieille (2005) Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651-6656.   DOI   ScienceOn
20 McKinlay, J. B., C. Vieille, and J. G. Zeikus (2007) Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76: 727-740.   DOI   ScienceOn
21 Xi, Y. L., K. Q. Chen, J. Li, X. I. Fang, X. Y. Zheng, S. S. Sui, M. Jiang, and P. Wei (2011) Optimization of culture conditions in $CO_2$ fixation for succinic acid production using Actinobacillus succinogenes. J Ind. Microbiol. Biotechnol. 38: 1605-1612.   DOI
22 Koropatkin, N. M., D. W. Koppenaal, H. B. Pakrasi, and T. J. Smith (2007) The Structure of a Cyanobacterial Bicarbonate Transport Protein, CmpA. J. Biological Chem. 282: 2606-2614.   DOI   ScienceOn
23 Shibata, M., H. Katoh, M. Sonoda, H. Ohkawa, M. Shimoyama, H. Fukuzawa, A. Kaplan, and T. Ogawa (2002) Genes Essential to Sodium-dependent Bicarbonate Transport in Cyanobacteria. J. Biological Chem. 277: 18658-18664.   DOI   ScienceOn
24 Siiltemeyer, D., G. D. Price, D. A. Bryant, and M. R. Badger. (1997) PsaE- and NdhF-mediated electron transport affect bicarbonate transport rather than carbon dioxide uptake in the Cyanobacterium Synechococcus sp. PCC7002. Planta. 201: 36-42.   DOI   ScienceOn
25 Lindskog, S. (1997) Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 74: 1-20.   DOI   ScienceOn
26 Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Chang (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol. Bioeng. 72: 41-48.   DOI
27 McKinlay, J. B., Y. S. Hill, J. G. Zeikus, and C. Vieille (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13 C-labeled metabolic product isotopomers. Metabolic Engineering 9: 177-192.   DOI   ScienceOn
28 Nghiem, N. P., B. H. Davison, B. E. Suttle, and G. R. Richardson (1997) Production of succinic acid by Anaerobiospirillum succiniciproducens. Appl. Biochem. Biotechnol. 63: 565-576.
29 Oh, I. J., H. W. Lee, C. H. Park, S. Y. Lee, and J. Lee (2008) Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechn. 18: 908-912.
30 Wu, H., Z. M. Li, L. Zhou, and Q. Ye (2007) Improved succinic acid production in the anaerobic culture of an Escherichia coli PflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl. Environ. Microbiol. 73: 7837-7843.   DOI   ScienceOn
31 Guettler, M. V., D. Rumler, and M. K. Jain (1999) Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49: 207-216.   DOI   ScienceOn
32 Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 58: 663-668.   DOI   ScienceOn
33 Lin, H., G. N. Bennett, and K. Y. San (2005) Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol. Bioeng. 89: 148-156.   DOI   ScienceOn
34 Lu, S. Y., M. A. Eiteman, and E. Altman (2009) Effect of $CO_2$ on succinate production in dual-phase Escherichia coli fermentations. J. Biotechnol. 143: 213-223.   DOI   ScienceOn
35 Siege, R. S. and R. A. Brierley (1989) Methylotrophic Yeast Pichia pastoris Produced in High-Cell-Density Fermentations with High Cell Yields as Vehicle for Recombinant Protein Production. Biotechnol. Bioeng. 34: 403-404.   DOI   ScienceOn
36 Tashian, R. E., D. P. Douglas, and Y. L. Yu (1964) Esterase and hydrase activity of carbonic anhydrase-I from primate erythrocytes. Biochem. Biophys. Res. Commun 14: 256-261.   DOI   ScienceOn
37 Li, P., A. Anumanthan, X. G. Gao, K. Ilangovan, V. V. Suzara, N. Düzgüness, and V. Renugopalakrishnan (2007) Expression of Recombinant Proteins in Pichia Pastoris. Appl. Biochem. Biotechnol. 142: 105-124.   DOI   ScienceOn
38 VanderWerf, M. J., M. V. Guettler, M. K. Jain, and J. G. Zeikus (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch. Microbiol. 167: 332-342.   DOI   ScienceOn