• Title/Summary/Keyword: Carbonaceous components

Search Result 16, Processing Time 0.024 seconds

Characteristics of Carbonaceous and Organic Components in PM2.5 over the Yellow Sea (서해상 PM2.5 내 탄소성분 및 유기성분의 화학적 특성)

  • Yoo, Ha Young;Kim, Ki Ae;An, Hyunjin;Lee, Yeonjung;Zihui, Teng;Yoo, Hee-Jung;Kim, Jeong Eun;Ko, Hee-Jung;Sung, Min-Young;Choi, Jin-Soo;Park, Jin-Soo;Lee, Ji Yi
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.267-282
    • /
    • 2021
  • Characteristics of carbonaceous components and organic compounds in PM2.5 over the atmosphere of the Yellow Sea were investigated. PM2.5 samples were collected onboard the meteorological research vessel, GISANG 1, over the Yellow Sea during the YES-AQ campaign in 2018 and 2019, respectively. The average concentrations of carbonaceous components in this region were 2.59 ± 1.59 ㎍ m-3 for the OC, 0.24 ± 0.10 ㎍ m-3 for the EC, 2.14 ± 1.30 ㎍ m-3 for the WSOC and 1.17 ± 0.94 ㎍ m-3 for the HULIS-C, respectively. The total concentration of 56 organic compounds (ΣOCs) accounts for 10% of OC. The main group among organic compounds were dicarboxylic acids which account for 57% of ΣOCs, followed by n-alkanoic acids accounting for 34% of ΣOCs. In n-alkanoic acid distribution, hexanoic (C6:0) and octanoic (C8:0) acids which are low molecular weight n-alkanoic acids and known as emitted from marine biogenic activities were dominant in this region. Furthermore, non-HULIS-C fraction increased when the air mass originated from the marine region rather than the continental region. When the Asian dust episode was observed, the WISOC concentrations along with the levoglucosan were increased, while the haze episodes caused the increase of WSOC, HULIC-S and DCAs. In this study, we found that the components of carbonaceous and organic aerosols in PM2.5 over the Yellow Sea were changed with the specific air pollution episodes. It indicates that the physicochemical properties of PM2.5 can be changed by the air pollution episodes in this region.

Characteristics of Carbonaceous Aerosols Measured at Gosan - Based on Analysis of Thermal Distribution by Carbon Analyzer and Organic Compounds by GCMS (제주도 고산지역 탄소 성분의 특성 분석 - 유기탄소의 열광학적 특성 및 유기성분 중심으로)

  • Bae, Min-Suk;Park, Seung-Shik;Kim, Young Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.722-733
    • /
    • 2013
  • Ground-based measurements were conducted from August 25 to September 8 of 2011 for understanding characteristics of carbonaceous aerosols measured at Gosan. Chemical components and their sources were discussed by analysis of organic compounds with identification of primary and secondary products in particulate matter. Thus, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, was used to improve the carbon fractionation of the analytical method. In addition, organic compounds by gas chromatography technique with the backward trajectories were discussed for characteristics of carbonaceous aerosols. Different air-masses were classified related to the OC thermal signatures and the organic molecular markers such as aromatic acids and PAHs. We concluded that the aging process was influenced by the long-range transport from East Sea area.

Comparison of Plant-derived Carbonaceous Components (Organic Molecular Markers and 14carbon) in PM2.5 in Summer and Autumn at Kazo, Japan

  • Sasaka, Kouki;Wang, Qingyue;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.165-175
    • /
    • 2017
  • In Japan, the primary carbonaceous particles emitted from motor vehicles and waste incinerators have been reduced due to strict regulations against exhaust gas. However, the relative contribution of carbonaceous particles derived from plants and biomass has been increasing. Accordingly, compositional analysis of carbonaceous particles has become increasingly important to determine the sources and types of particles produced. To reveal the sources of the organic particles contained in particulate matter with diameters of ${\leq}2.5{\mu}m$ ($PM_{2.5}$) and the processes involved in their generation, we analyzed molecular marker compounds (2-methyltetrols, cis-pinonic acid, and levoglucosan) derived from the plants and biomass in the $PM_{2.5}$ collected during daytime- and nighttime-sampling periods in summer (July and August) and autumn (November) in Kazo, which is in the northern area of Saitama prefecture, Japan. We also measured $^{14}C$ carbonaceous concentrations in the same $PM_{2.5}$ samples. The concentrations of 2-methyltetrols were higher in the summer than in the autumn. Because the deciduous period overlaps with this decrease in the levels of 2-methyltetrols, we considered the emission source to broad-leaved trees. In contrast, the emission source of the cis-pinonic acid precursor was considered to be conifers, because its concentration remained almost constant throughout the year. The concentration of levoglucosan was considerably increased in the autumn due to frequent biomass open burning. The ratio of plant-derived carbon to total carbon, obtained by measuring of $^{14}C$, in summer $PM_{2.5}$ sample was higher in the nighttime, and could be influenced by anthropogenic sources during the daytime.

Determination of Amino Acids on Wintertime PM2.5 using HPLC-FLD (HPLC-FLD를 이용한 겨울철 PM2.5 중 아미노산 성분 분석)

  • Park, Da-Jeong;Cho, In-Hwan;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.482-492
    • /
    • 2015
  • Ground-based measurements were conducted from January 6 to 12 of 2015 for understanding characteristics of nitrogen containing carbonaceous aerosols as 16 amino acids at the Mokpo National University, Korea. The detailed amino acid components such as Cystine ($(SCH_2CH(NH_2)CO_2H)_2$) and Methionine ($C_5H_{11}NO_2S$) and their sources were analyzed by High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) for behavior of secondary products in particulate matter. In addition, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, and water soluble organic carbon (WSOC) by total organic carbon (TOC) analyzer were used to understand the carbon compound behaviors. The backward trajectories were discussed for originations of carbonaceous aerosols as well. Different airmasses were classified with the amino acids and OC thermal signatures. The results can provide to understand the aging process influenced by the long-range transport from East Sea area.

Physical, Chemical and Optical Properties of Fine Aerosol as a Function of Relative Humidity at Gosan, Korea during ABC-EAREX 2005

  • Moon, Kwang-Joo;Han, Jin-Seok;Cho, Seog-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.129-138
    • /
    • 2013
  • The water uptake by fine aerosol in the atmosphere has been investigated at Gosan, Korea during ABC-EAREX 2005. The concentration of inorganic ion and carbon components, size distribution, and light scattering coefficients in normal and dry conditions were simultaneously measured for $PM_{2.5}$ by using a parallel integrated monitoring system. The result of this study shows that ambient fine particles collected at Gosan were dominated by water-soluble ionic species (35%) and carbonaceous materials (18%). In addition, it shows the large growth of aerosol in the droplet mode when RH is higher than 70%. Size distribution of the particulate surface area in a wider size range ($0.07-17{\mu}m$) shows that the elevation of RH make ambient aerosol grow to be the droplet mode one around $0.6{\mu}m$ or the coarse mode one, larger than $2.5{\mu}m$. Hygroscopic factor data calculated from the ratio of aerosol scattering coefficients at a given ambient RH and a reference RH (25%) show that water uptake began at the intermediate RH range, from 40% to 60%, with the average hygroscopic factor of 1.10 for 40% RH, 1.11 for 50% RH, and 1.17 for 60% RH, respectively. Finally, average chemical composition and the corresponding growth curves were analyzed in order to investigate the relationship between carbonaceous material fraction and hygroscopicity. As a result, the aerosol growth curve shows that inorganic salts such as sulphate and nitrate as well as carbonaceous materials including OC largely contribute to the aerosol water uptake.

Seasonal Variation of PM2.5 Components Observed in an Industrial Area of Chiba Prefecture, Japan

  • Ichikawa, Yujiro;Naito, Suekazu;Ishii, Katsumi;Oohashi, Hideaki
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.66-77
    • /
    • 2015
  • In order to survey the seasonal variation of the chemical composition of particulate matter of $2.5{\mu}m$ or less ($PM_{2.5}$), $PM_{2.5}$ was sampled from 8 February 2013 to 31 March 2014 in an industrial area of Chiba Prefecture, Japan. Chemical measurements of the sample included: ionic components ($Na^+$, $NH_4{^+}$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$), carbonaceous components - organic carbon (OC) and elemental carbon (EC), and water-soluble organic carbon (WSOC). Also, secondary organic carbon (SOC) was measured based using the EC tracer method, and char-EC and soot-EC were calculated from the analytical results. The data obtained were interpreted in terms of temporal variation. Of the overall mean value of $PM_{2.5}$ mass concentration obtained during the study period, ionic components, OC and EC accounted for 45.3%, 19.7%, and 8.0%, respectively. $NO_3{^-}$ showed a unique seasonal distribution pattern due to a dependence on temperature and absolute humidity. It was estimated that an approximate temperature of $14^{\circ}C$, and absolute humidity of $7g/m^3$ were critical for the reversible reaction of $NH_4NO_3(p){\leftrightharpoons}NH_3(g)+HNO_3(g)$. The amount of OC and EC contributing to the monthly $PM_{2.5}$ mass concentration was higher in autumn and winter compared to spring and summer. This result could be attributed to the impact of burning biomass, since WSOC and the ratio of char-EC/soot-EC showed a similar pattern during the corresponding period. From the comparison of monthly WSOC/OC values, a maximum ratio of 83% was obtained in August (summer). The WSOC and estimated SOC levels derived from the EC tracer method correlated (R=0.77) in summer. The high occurrence of WSOC during summer was mainly due to the formation of SOC by photochemical reactions. Through long-term observation of $PM_{2.5}$ chemical components, we established that the degree to which the above-mentioned factors influence $PM_{2.5}$ composition, fluctuates with seasonal changes.

Adsorption Characteristics of Three-components Volatile Organic Compounds on Activated Carbonaceous Adsorbents (탄소흡착제에 의한 삼성분계 휘발성 유기화합물의 흡착특성)

  • Son, Mi Sook;Kim, Sang Do;Woo, Kwang Jae;Park, Hee jae;Seo, Man cheol;Lee, Si hun;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.669-675
    • /
    • 2006
  • Toluene of aromatic compounds, MEK of ketones and IPA of alcohols were extremely used as VOCs (Volatile Organic Compounds) on the getting into step with industrial process. The adsorption characteristics of three component solvent vapors (Toluene-MEK-IPA) on the activated carbonaceous adsorbents such as AC, ACF and AC+ACF were investigated in a stainless steel fixed bed adsorption experimental apparatus in order to identify those carbons for eliminating and recovering solvent vapors from industrial emission sources. The used activated carbonaceous adsorbents were pelletized commercial activated carbon and activated carbon fiber. The breakthrough curves and adsorption capacity have been obtained at atmospheric pressure in a adsorption fixed bed. It has been found that non-polar and larger molecules have been adsorbed better than polar and smaller molecules. Especially, alcohols and ketones were poorly adsorbed due to competitive adsorbability in ternary mixture system. However, it could be overcome by employment of activated carbonaceous adsorbent which have different porosity distribution appropriately.

Characteristics of $PM_{2.5}$ Particles Measured in the Background Sites of Korea (우리나라 청정 지역에서 측정한 $PM_{2.5}$ 입자의 특성)

  • 이종훈;김용표;문길주;김희강;정용승;이종범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.439-450
    • /
    • 1997
  • Atmospheric fine particles $(PM_{2.5})$ were collected at the background sites, Kangwha, Taean, and Kosan and characterized to understand their behaviors at the sites. Daily samples of $PM_{2.5}$ mass were measured and ionic species, carbonaceous species, and gaseous species were analyzed. Four-day backward trajectory analysis was also carried out. The mean concentrations of anthropogenic species were highest at Kangwha among three sites, while contributions from sea salts wree highest at Taean during the measurement period due to higher wind speed at Taean. Major chemical components in fine particles were sulfate, organic carbon, nitrate, and ammoniu. Most of the non-sea-salt (nss) sulfates in $PM_{2.5}$ might be present as ammonium sulfates at these sites. Most air parcels arriving at Kangwha and Taean were from northern China. Therefore, both sites were thought to be affected by the same air parcel. At Kosan, during the measurement period, air parcels were from either northern China or sourthern China. The nss sulfate concentration in the air parcels from southern China was higher, while the nss calcium, nitrate, and ammonium concentrations were higher when the air parcels were from northern China.

  • PDF

Characteristics of Air Pollutants at Three Background Sites in Korea in the Winter of 1996/1997 (1996/1997년 겨울 우리나라 배경측정소에서의 대기오염 물질 특성)

  • 김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.415-420
    • /
    • 2000
  • The daily mean concentrations of PM2.5 mass ionic species carbonaceous species and HNO3, HCl, and NH3 were analyzed at three background sites in Korea : Kangwha, Kosan, and Dongbaik during two intensive field studies between December 1996 and January 1997, Four-day backward trajectory analysis was also carried out. The mean concentrations of anthropogenic species were higher at Kangwha and Dongbaik than Kosan. At these two sites themean concentrations of nitrate and ammonium/ammonia were higher than those of Kosan. It was suggested that these two sites be considered as the background sites of the Seoul Metropolitan Area and Pusan respectively. Major chemical components in fine particles were sulfate organic carbon nitrate and ammonium for all the sites. More than 90% of sulfate were non-sea-salt(nss) sulfates and most of the nss sulfate in PM2.5 might be present as ammonium sulfates at all sites. Most of air parcels arriving a Kangwha and Dongbaik were from the northern China. At Kosan during the measurement period half of air parcels were from the northern China and the other half from the southern China. At Kosan the concentrations of anthropogenic air pollutants originated from the southern China were higher than those typically observed from the northern China.

  • PDF

DEEP-South: A New Taxonomic Classification of Asteroids

  • Roh, Dong-Goo;Moon, Hong-Kyu;Shin, Min-Su;Lee, Hee-Jae;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.49.1-49.1
    • /
    • 2016
  • Asteroid taxonomy dates back to the mid-1970's and is based mostly on broadband photometric and spectroscopic observations in the visible wavelength. Different taxonomic classes have long been characterized by spectral slope shortward of 0.75 microns and the absorption band in 1 micron, the principal components. In this way, taxonomic classes are grouped and divided into four broad complexes; silicates (S), carbonaceous (C), featureless (X), Vestoids (V), and the end-members that do not fit well within the S, C, X and V complexes. The past decade witnessed an explosion of data due to the advent of large-scale asteroid surveys such as SDSS. The classification scheme has recently been expanded with the analysis of the SDSS 4th Moving Object Catalog (MOC 4) data. However, the boundaries of each complex and subclass are rather ambiguously defined by hand. Furthermore, there are only few studies on asteroid taxonomy using Johnson-Cousins filters, and those were conducted on a small number of objects, with significant uncertainties. In this paper, we present our preliminary results for a new taxonomic classification of asteroids using SMASS, Bus and DeMeo (2014) and the SDSS MOC 4 datasets. This classification scheme is simply represented by a triplet of photometric colors, either in SDSS or in Johnson-Cousins photometric systems.

  • PDF