DOI QR코드

DOI QR Code

Physical, Chemical and Optical Properties of Fine Aerosol as a Function of Relative Humidity at Gosan, Korea during ABC-EAREX 2005

  • Moon, Kwang-Joo (Department of Air Quality Research, Climate and Air Quality Research Division, National Institute of Environmental Research, Environmental Research Complex) ;
  • Han, Jin-Seok (Department of Air Quality Research, Climate and Air Quality Research Division, National Institute of Environmental Research, Environmental Research Complex) ;
  • Cho, Seog-Yeon (Department of Environmental Engineering, Inha University)
  • 투고 : 2012.07.19
  • 심사 : 2013.06.12
  • 발행 : 2013.09.30

초록

The water uptake by fine aerosol in the atmosphere has been investigated at Gosan, Korea during ABC-EAREX 2005. The concentration of inorganic ion and carbon components, size distribution, and light scattering coefficients in normal and dry conditions were simultaneously measured for $PM_{2.5}$ by using a parallel integrated monitoring system. The result of this study shows that ambient fine particles collected at Gosan were dominated by water-soluble ionic species (35%) and carbonaceous materials (18%). In addition, it shows the large growth of aerosol in the droplet mode when RH is higher than 70%. Size distribution of the particulate surface area in a wider size range ($0.07-17{\mu}m$) shows that the elevation of RH make ambient aerosol grow to be the droplet mode one around $0.6{\mu}m$ or the coarse mode one, larger than $2.5{\mu}m$. Hygroscopic factor data calculated from the ratio of aerosol scattering coefficients at a given ambient RH and a reference RH (25%) show that water uptake began at the intermediate RH range, from 40% to 60%, with the average hygroscopic factor of 1.10 for 40% RH, 1.11 for 50% RH, and 1.17 for 60% RH, respectively. Finally, average chemical composition and the corresponding growth curves were analyzed in order to investigate the relationship between carbonaceous material fraction and hygroscopicity. As a result, the aerosol growth curve shows that inorganic salts such as sulphate and nitrate as well as carbonaceous materials including OC largely contribute to the aerosol water uptake.

키워드

참고문헌

  1. Alves, C., Pio, C., Duarte, A. (2001) Composition of extractable organic matter of air particles from rural and urban Portuguese areas. Atmospheric Environment 35, 5485-5496. https://doi.org/10.1016/S1352-2310(01)00243-6
  2. Arhami, M., Thomas, K., Fine, M.R., Delfino, J., Sioutas, C. (2006) Effects of sampling artifacts and operating parameters on the performance of a semicontinuous particulate elemental carbon/organic carbon monitor. Environmental Science & Technology 40, 945-954. https://doi.org/10.1021/es0510313
  3. Brechtel, F.J., Kreidenweis, S.M. (2000) Predicting particle critical supersaturation from hygroscopic growth measurement in the humidified TDMA: Part II: laboratory and ambient studies. Journal of Atmospheric Sciences 57, 1872-1887. https://doi.org/10.1175/1520-0469(2000)057<1872:PPCSFH>2.0.CO;2
  4. Brooks, S.D., DeMott, P.J., Kreidenweis, S.M. (2004) Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate. Atmospheric Environment 38, 1859-1868. https://doi.org/10.1016/j.atmosenv.2004.01.009
  5. Carrico, C.M., Kreidenweis, S.M., Malm, W.C., Day, D.E., Lee, T., Carrillo, J., McMeeking, G.R., Collett, J.L. (2005) Hygroscopic growth behaviour of a carbondominated aerosol in Yosemite National Park. Atmospheric Environment 39, 1393-1404. https://doi.org/10.1016/j.atmosenv.2004.11.029
  6. Chazette, P., Liousse, C. (2001) A case study of optical and chemical ground apportionment for urban aerosols in Thessaloniki. Atmospheric Environment 35, 2497-2506. https://doi.org/10.1016/S1352-2310(00)00425-8
  7. Choi, M.Y., Chan, C.K. (2002) The effects of organic species on the hygroscopic behaviours of inorganic aerosols. Environmental Science & Technology 36, 2422-2428. https://doi.org/10.1021/es0113293
  8. Day, D.E., Malm, W.C., Kreidenweis, S.M. (2000) Aerosol light scattering measurements as a function of relative humidity. Journal of the Air & Waste Management Association 50, 710-716. https://doi.org/10.1080/10473289.2000.10464103
  9. Day, D.E., Malm, W.C. (2001) Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites. Atmospheric Environment 35, 5169-5176. https://doi.org/10.1016/S1352-2310(01)00320-X
  10. Dick, W.D., Saxwna, P.H., McMurry, P.H. (2000) Estimation of water uptake by organic compounds in submicron aerosols measured during the southeastern aerosol and visibility study. Journal of Geophysical Research 105, 1471-1479. https://doi.org/10.1029/1999JD901001
  11. Formenti, P., Andreae, M.O., Andreae, T.W., Ichoku, C., Schebeske, G., Kettle, A.J., Maenhaut, W., Cafmeyer, J., Ptasinsky, J., Karnieli, A., Lelieveld, J. (2001) Physical and chemical characteristics of aerosols over the Negev Desert (Israel) during summer 1996. Journal of Geophysical Research 106, 4871-4890. https://doi.org/10.1029/2000JD900556
  12. Han, J.S., Moon, K.J., Ahn, J.Y., Hong, Y.D., Kim, Y.J., Ryu, S.Y., Cliff, S.S., Cahill, T.A. (2004) Characteristics of ion components and trace elements of fine particles at Gosan, Korea in spring time from 2001 to 2002. Environmental Monitoring and Assessment 92, 73-93. https://doi.org/10.1023/B:EMAS.0000014510.21563.50
  13. Han, J.S., Moon, K.J., Lee, S.J., Kim, Y.J., Ryu, S.Y., Cliff, S.S., Yi, S.M. (2006) Size-resolved source apportionment of ambient particles by positive matrix factorization. Atmospheric Chemistry and Physics 6, 211-223. https://doi.org/10.5194/acp-6-211-2006
  14. Han, J.S., Moon, K.J., Kim, Y.J. (2006a) Identification of potential sources and source regions of fine ambient particles measured at Gosan background site in Korea using advanced hybrid receptor model combined with positive matrix factorization. Journal of Geophysical Research 111, D22217, doi:10.1029/2005JD006577.
  15. Han, J.S., Moon, K.J., Hong, Y.D., Kondo, Y., Miyazakim, Y., Kim, Y.J. (2006b) Validation of $PM_{2.5}$ carbon measurement protocols for semi-continuous carbon monitor, Proceedings of the seventh International Aerosol Conference (IAC), edited by P. Biswas, D. Chen, and S. Hering, pp. 534-535, AAAR, St. Paul, Minnesota, USA.
  16. Hansson, H.C., Rood, M.J., Koloutsou-Vakakis, S., Hameri, K., Orsini, D., Wiedensohler, A. (1998) NaCl aerosol particle hygroscopicity dependence on mixing with organic compounds. Journal of Atmospheric Chemistry 31, 321-346. https://doi.org/10.1023/A:1006174514022
  17. Hegg, D.A., Livingston, J., Hobbs, P.V. (1997) Chemical apportionment of aerosol column optical depth off the Mid-Atlantic Coast of the United States. Journal of Geophysical Research 102, 25,293-25,303. https://doi.org/10.1029/97JD02293
  18. Kim, J., Yoon, S.C., Jefferson, A., Kim, S.W. (2006), Aerosol hygroscopic properties during Asian dust, pollution, and biomass episodes at Gosan, Korea in April 2001. Atmospheric Environment 40, 1550-1560. https://doi.org/10.1016/j.atmosenv.2005.10.044
  19. Malm, W.C., Day, D.E., Carrico, C., Keidenweis, S.M., Collett Jr., J.L., McMeeking, G., Lee, T., Carrillo, J., Schichtel, B. (2005a) Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study. Journal of Geophysical Research 110, D14302, doi:10.1029 /2004JD005494. https://doi.org/10.1029/2004JD005494
  20. Malm, W.C., Day, D.E., Kreidenweis, S.M., Collett Jr., J.L., Carrico, C., McMeeking, G., Lee, T. (2005b) Hygroscopic properties of an organic-laden aerosol. Atmospheric Environment 39, 4969-4982. https://doi.org/10.1016/j.atmosenv.2005.05.014
  21. Mayol-Bracero, O.L., Gabriel, R., Andreae, M.O., Kirchstetter, T.W., Novakov, T., Ogren, J., Sheridan, P., Streets, D.G. (2002) Carbonaceous aerosol over the Indian Ocean during the Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties, and probable sources. Journal of Geophysical Research 107 (D19), doi: 10.1029/2000JD000039.
  22. McInnes, L., Bergin, M., Ogren, J. (1998) Apportionment of light scattering and hygroscopic growth to aerosol composition. Geophysical Research Letters 25, 513-516. https://doi.org/10.1029/98GL00127
  23. McMurry, P.H., Stolzenburg, M.R. (1998) On the sensitivity of particle size to relative humidity for Los Angeles aerosols. Atmospheric Environment 23(2), 497-507.
  24. Molenar, J.V. (1997) Analysis of the real world performance of the Optec NGN-2 ambient nephelometers, In: Visual Air Quality: Aerosols and Global Radiation Balance, Air & Waste Management Association, Pittsburgh, pp. 243-265.
  25. Moon, K.J., Han, J.S., Jung, I.R., Kondo, Y., Miyazaki, Y. (2006) Evaluation of a URG ambient ion monitoring system (AIM) for measuring water soluble ion components of ambient $PM_{2.5}$: Intercomparison with PILSIC monitor, Proceedings of the seventh International Aerosol Conference (IAC), edited by P. Biswas, D. Chen, and S. Hering, pp. 416-417, AAAR, St. Paul, Minnesota, USA.
  26. Oberreit, D.R., Holm, R.L., Hairston, P.P., Quant, F.R., Sem, G.J. (2001) Improvements in Particle Mass Distribution measurement with the TSI 3320 APS, poster paper presented at American Association for Aerosol Research Conference.
  27. Peterson, M.R., Richards, M.H. (2002) Thermal-Optical- Transmittance Analysis for Organic, Elemental, Carbonate, Total Carbon, and OCX2 in $PM_{2.5}$ by the EPA/ NIOSH Method, RTI International conference proceeding, 19 pp., Research Triangle Institute, Washington, D.C., USA.
  28. Prenni, A.J., Demott, P.J., Kredenweis, S.M. (2003) Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids. Atmospheric Environment 37, 4243-4251. https://doi.org/10.1016/S1352-2310(03)00559-4
  29. Quinn, P.K., Bates, T.S., Coffman, D.J., Miller, T.L., Johnson, J.E., Covert, D.S., Putaud, J.P., Neusub, C., Novakov, T. (2000) A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments. Tellus, Ser. B, 52, 239-257, 2000. https://doi.org/10.1034/j.1600-0889.2000.00033.x
  30. Quinn, P.K., Coffman, D.J., Bates, T.S., Miller, T.L., Johnson, J.E., Welton, E.J., Neususs, C., Miller, M., Sheridan, P.J. (2002) Aerosol optical properties during INDOEX 1999: Means, variability, and controlling factors. Journal of Geophysical Research 107(D19), 8020, doi: 10.1029/2000JD000037.
  31. Ramanathan, V., Crutzen, P.J., Lelieveld, J., Mitra, A.P., Althausen, D., Anderson, J., Andreae, M.O., Cantrell, W., Cass, G.R., Chung, C.E., Clarke, A.D., Coakley, J.A., Collins, W.D., Conant, W.D., Dulac, F., Heintzenberg, J., Heymsfield, A.J., Holben, B., Howel, S., Hudson, J., Jayaraman, A., Kiehl, J.T., Krishnamurti, T.N., Lubin, D., McFarquhar, G., Novakov, T., Ogren, J.A., Podgorny, I.A., Prather, K., Priestley, K., Prospero, J.M., Quinn, P.K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh, S.K., Shaw, G.E., Sheridan, P., Valero, F.P.J. (2001) Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophsical Research 106, 28371. https://doi.org/10.1029/2001JD900133
  32. Ramanathan, V., Crutzen, P.J. (2003) New Directions: Atmospheric Brown "Cloud". Atmospheric Environment 37, 4033-4035. https://doi.org/10.1016/S1352-2310(03)00536-3
  33. Saxena, P., Hildemann, L.M., McMurry, P.H., Seinfeld, J.H. (1995) Organics alter hygroscopic behaviour of atmospheric particles. Journal of Geophysical Research 100, 18755-18770. https://doi.org/10.1029/95JD01835
  34. Seinfeld, J.H., Pandis, S.N. (1998) Atmospheric chemistry and physics from air pollution to climate change, pp. 901-912, John Wiley & Sons, Inc., New York, USA.
  35. Sisler, J.F., Malm, W.C. (2000) Interpretation of trends of $PM_{2.5}$ and reconstructed visibility from the IMPROVE network. Journal of Air & Waste Management Association 50, 775-789. https://doi.org/10.1080/10473289.2000.10464127
  36. Stein, S.W., Gabrio, B.J., Oberreit, D.R., Hairston, P.P., Myrdal, P.B., Beck, T.J. (2002) An evaluation of massweighted size distribution measurements with the model 3320 Aerodynamic Particle Sizer. Aerosol Science and Technology 36, 845-854. https://doi.org/10.1080/02786820290092087
  37. Swietlicki, E., Zhou, J., Berg, O.H., Martinsson, B.G., Goran, F., Cederfelt, S., Dusek, U., Berner, A., Birmili, W., Wiendensohler, A., Yuskiewicz, B., Bower, K.N. (1999) A closure study of sub-micrometer aerosol particle hygroscopic behaviour. Atmospheric Research 50, 205-240. https://doi.org/10.1016/S0169-8095(98)00105-7
  38. Tang, I.N. (1976) Phase transformation and growth of aerosol particles composed of mixed salts. Journal of Aerosol Science 7, 361-371. https://doi.org/10.1016/0021-8502(76)90022-7
  39. Tang, I.N. (1980) Deliquescence properties and particle size change of hygroscopic aerosols, in Generation of Aerosols, edited by K. Willeke, chap. 7, Butterworth, Stoneham, Mass.
  40. Tang, I.N., Munkelwitz, H.R. (1993) Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmospheric Environment 27A, 467-473.
  41. Tang, I.N. (1996) Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal of Geophysical Research 101(D14), 19245-19250. https://doi.org/10.1029/96JD03003
  42. White, W.J. (1976) Reduction of visibility by sulfate in photochemical smog. Nature 264, 735-736. https://doi.org/10.1038/264735a0

피인용 문헌

  1. at a site close to a roadway in Gwangju, Korea, during winter vol.17, pp.10, 2015, https://doi.org/10.1039/C5EM00225G
  2. Elemental Composition and Source Identification of PM2.5 in Jeju City vol.27, pp.7, 2018, https://doi.org/10.5322/JESI.2018.27.7.543