• Title/Summary/Keyword: Carbon-carbon composite

Search Result 2,820, Processing Time 0.026 seconds

Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites using Electro-Micromechanical Techniques and Nondestructive Evaluations

  • Park, Joung-Man;Lee, Sang-Il
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • Interfacial adhesion and nondestructive behavior of electrodeposited (ED) carbon fiber rein-forced composites were evaluated using electro-micromechanical techniques and acoustic emission (AE). The interfacial shear strength (IFSS) of the ED carbon fiber/epoxy composites was higher than that of the untreated fiber. This might be expected because of the possibility of chemical or hydrogen bonding in an electrically adsorbed polymeric interlayer. The logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when fiber fracture occurred, whereas that of the ED composite increased relatively gradually to infinity. This behavior may arise from the retarded fracture time due to enhanced IFSS. In single- and ten-carbon fiber composites, the number of AE signals coming from interlayer failure of the ED carbon fiber composite was much larger than that of the untreated composite. As the number of the each first fiber fractures increased in the ten-carbon fiber composite, the electrical resistivity increased stepwise, and the slope of the logarithmic electrical resistance increased.

  • PDF

Permittivities of the Carbon Nano Fiber/Epoxy Composite According to the Dispersion Methods (분산 방법에 따른 카본 나노 섬유/에폭시 복합재료의 유전율)

  • 김태욱;김진봉;공진우;정재한;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.55-58
    • /
    • 2003
  • This paper presents a study on the permittivities of the carbon nano fiber/epoxy composite at microwave frequency. The permittivities of composite materials depend on the concentrations and the dispersion methods of the carbon nano fibers. The experimental values of complex permittivities were obtained for the specimen made by dispersion method using ethyl alcohol as dispersion media and compared with the results by simple mechanical mixing method.

  • PDF

Study on the High Rate Shear Deformation of a Carbon/Epoxy Composite (Carbon/Epoxy 복합재의 고속변형 특성 연구)

  • 최재호;박인서;이성호;송흥섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.99-102
    • /
    • 2003
  • Carbon/Epoxy composite specimens formed with buttress groves are fabricated. The buttress form of groove is useful in any application where high shear loads are transferred in one direction between structural components. It is a primary object of the present study to test and evaluate the shear load carrying capability of a carbon/epoxy composite structure with buttress grooves for military applications

  • PDF

Preparation and Characterization of Spherical Carbon Composite for Use as Anode Material for Lithium Ion Batteries

  • Ahn, Byoung-Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1331-1335
    • /
    • 2010
  • A novel spherical carbon composite material, in which nanosized disordered carbons are dispersed in a soft carbon matrix, has been prepared and investigated for use as a potential anode material for lithium ion batteries. Disordered carbons were synthesized by ball milling natural graphite in air. The composite was prepared by mixing the ball-milled graphite with petroleum pitch powder, pelletizing the mixture, and pyrolyzing the pellets at $1200^{\circ}C$ in an argon flow. The ballmilled graphite consists of distorted nanocrystallites and amorphous phases. In the composite particle, nanosized flakes are uniformly distributed in a soft carbon matrix, as revealed by X-ray diffractometer (XRD) and transmission electron microscopy (TEM) experiments. The composite is compatible with a pure propylene carbonate (PC) electrolyte and shows high rate capability and excellent cycling performance. The electrochemical properties are comparable to those of hard carbon.

TiO2/Carbon Composites Prepared from Rice Husk and the Removal of Bisphenol A in Photocatalytic Liquid System

  • Kim, Ji-Yeon;Kwak, Byeong-Sub;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.344-350
    • /
    • 2010
  • The improved photocatalytic performance of a carbon/$TiO_2$ composite was studied for the Bisphenol A (BPA) decomposition. Titanium tetraisopropoxide (TTIP) and a rice husk from Korea were heterogeneously mixed as the titanium and carbon sources, respectively, for 3 h at room temperature, and then thermally treated at $600^{\circ}C$ for 1 h in $H_2$ gas. The transmission electron microscopy (TEM) images revealed that the bulk carbon partially covered the $TiO_2$ particles, and the amount that was covered increased with the addition of the rice husk. The acquired carbon/$TiO_2$ composite exhibited an anatase structure and a novel peak at $2{\theta}=32^{\circ}$, which was assigned to bulk carbon. The specific surface area was significantly enhanced to 123~164 $m^2/g$ in the carbon/$TiO_2$ composite, compared to $32.43m^2/g$ for the pure $TiO_2$. The X-ray photoelectron spectroscopy (XPS) results showed that the Ti-O bond was weaker in the carbon/$TiO_2$ composite than in the pure $TiO_2$, resulting in an easier electron transition from the Ti valence band to the conduction band. The carbon/$TiO_2$ composite absorbed over the whole UV-visible range, whereas the absorption band in the pure$TiO_2$ was only observed in the UV range. These results agreed well with an electrostatic force microscopy (EFM) study that showed that the electrons were rapidly transferred to the surface of the carbon/$TiO_2$ composite compared to the pure $TiO_2$. The photocatalytic performance of the BPA removal was optimized at a Ti:C ratio of 9.5:0.5, and this photocatalytic composite completely decomposed 10.0 ppm BPA after 210 min, whereas the pure $TiO_2$ achieved no more than 50% decomposition under any conditions.

A new nano-composite carbon ink for disposable dopamine biosensors (나노컴포지트 카본 잉크가 전착된 일회용 도파민 바이오센서)

  • Dinakaran, T.;Chang, S.-C.
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.

Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers

  • Park, Jong Kyoo;Lee, Jae Yeol;Drzal, Lawrence T.;Cho, Donghwan
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.

A Study on the Preparation and Characterization of Carbon Fiber Composite Filter (탄소섬유 복합여과재의 제조 및 물성연구)

  • 이재춘;신경숙;이덕용;김병균;심선자;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.989-994
    • /
    • 1995
  • Rigid porous carbon fiber composites with the uniform pore size distribution were prepared by vacuum forming from water slurries containing carbonized PAN fibers, a phenolic resin and ceramic binders. The composites were designed to use for highly efficient carbon fiber filters for particulate filtration and gas adsorption. As the as-received carbon fibers of 1mm in length were milled to an approximate average length of 300${\mu}{\textrm}{m}$, modulus of rupture (MOR) of the composite filter was increased from 1MPa to the value larger than 5 MPa. Modulus of rupture (MOR) for the composite filter fabricated using the milled carbon fiber was increased from 5 MPa to 10 MPa as the carbonization temperature of the PAN fiber was raised from 90$0^{\circ}C$ to 140$0^{\circ}C$. The air permeability and an average pore size of the composite filter were increased from 40 to 270cc/min.$\textrm{cm}^2$ and from 35 to 80${\mu}{\textrm}{m}$, respectively, as the apparent porosity increased from 80 to 95%. It was shown that the MOR of the carbon fiber composite filter was dependent primarily on the average length of carbon fiber, carbonization temperature and the type of bonding materials.

  • PDF

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.