Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Choi, Yusong (Propulsion Sources Team, Agency for Defense Developmen) ;
  • Park, Jong Kyoo (Composite Materials Team, Agency for Defense Developmen) ;
  • Lee, Jinyong (Composite Materials Team, Agency for Defense Developmen) ;
  • Yoon, Byung Il (Composite Materials Team, Agency for Defense Developmen) ;
  • Lim, Yun Soo (Department of Ceramics Engineering, Myong Ji University)
  • Published : 2004.03.01

Abstract

In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

Keywords

References

  1. J.-B. Donnet, T. K. Wang, J. C. M. Peng, and S. Rebouillat Eds., 'Carbon Fibers', 3rd ed., Marcel Dekker, New York, 1998
  2. D. L. Schmidt and R. D. Craig, 'Advanced Carbon Fabric/ Phenolic for Thermal Protection Applications', AFWAC-TR-81-4136, AFWAL (1982)
  3. D. Cho and B. I. Yoon, Comp. Sci. Tech., 61, 271 (2001) https://doi.org/10.1016/S0266-3538(00)00212-8
  4. A. B. Strong, 'Fundamentals of Composites Manufactur-ing: Materials, Methods, and Applications', Chap. 9, SME, Dearbom, 1989
  5. A. Gardziella, L. A. Pilato, and A. Knop, 'Phenolic Resins', Sphnger-Verlag, Berlin, 2000
  6. G. Pan, N. Muto, M. Miyayama, and H. Yanagida, J. Mater.Sci., 27, 3497 (1992) https://doi.org/10.1007/BF01151825
  7. H. A. Katzman, P. M. Adams, T. D. Le, and C. S. Hem-minger, Carbon, 32, 379 (1994) https://doi.org/10.1016/0008-6223(94)90158-9
  8. L. R. Zhao and B. Z. Jang, J. Mater.Sci., 30, 4535 (1995) https://doi.org/10.1007/BF01153059
  9. D. Cho, Y. Choi, J. K. Park, and J. Y. Lee, Potym. Sci.Tech., 11, 717 (2000)
  10. D. Cho, Y. Choi, and J. K. Park, Potymer (Korea), 25, 575 (2001)
  11. J. K. Park and T. J. Kang, Carbon, 40, 2125 (2002) https://doi.org/10.1016/S0008-6223(02)00063-5
  12. J. K. Park, D. Cho, and T. J. Kang, Carbon, 42, 795 (2004) https://doi.org/10.1016/j.carbon.2004.01.046
  13. J. K. Park, Ph. D. Dissertation, Seoul National University, Seoul, 2002
  14. A. K. Gupta, D. K. Paliwal, and P. Bajaj, J. MacmmoI. Sci.-Rev. MacromoI. Chem. Phys., C31, 1 (1991)
  15. D. D. L. Chung, 'Carbon Fiber Composites', Chap. 6, Butterworth-Heinemann, Boston, 1994
  16. N. L. Hancox and R. M. Mayer Eds., 'Design Data for Reinforced Plastics', Chap. 7, Chapman & Hall, London,1994