• Title/Summary/Keyword: Carbon-based catalysts

Search Result 116, Processing Time 0.023 seconds

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.

Effect of Cobalt Loading on the Performance and Stability of Oxygen Reduction and Evolution Reactions in Rechargeable Zinc-air Batteries

  • Sheraz Ahmed;Joongpyo Shim;Gyungse Park
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.87-92
    • /
    • 2024
  • The commercialization of rechargeable metal-air batteries is extremely desirable but designing stable oxygen reduction reaction (ORR) catalysts with non-noble metal still has faced challenges to replace platinum-based catalysts. The nonnoble metal catalysts for ORR were prepared to improve the catalytic performance and stability by the thermal decomposition of ZIF-8 with optimum cobalt loading. The porous carbon was obtained by the calcination of ZIF-8 and different loading amounts of Co nanoparticles were anchored onto porous carbon forming a Co/PC catalyst. Co/PC composite shows a significant increase in the ORR value of current and stability (500 h) due to the good electronic conductive PCN support and optimum cobalt metal loading. The significantly improved catalytic performance is ascribed to the chemical structure, synergistic effects, porous carbon networks, and rich active sites. This method develops a new pathway for a highly active and advantageous catalyst for electrochemical devices.

Fabrication of CNT/MgCl2-Supported Ti-based Ziegler-Natta Catalysts for Trans-selective Polymerization of Isoprene

  • Cao, Lan;Zhang, Xiaojie;Wang, Xiaolei;Zong, Chengzhong;Kim, Jin Kuk
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.158-167
    • /
    • 2018
  • In this study, in-situ trans-selective polymerization of isoprene was carried out using titanium-based Ziegler-Natta catalysts. The catalysts were prepared by high-energy ball milling. Individually Large-inner-diameter carbon nanotubes (CNTL), and hydroxylated carbon nanotubes (CNTOH), along with magnesium chloride ($MgCl_2$) were used as the carriers for the catalysts. The optimum ball-milling time for preparing the $CNT/MgCl_2/TiCl_4$ Ziegler-Natta catalysts was 4 h. The $CNTOH/MgCl_2/TiCl_4$ catalyst showed a higher efficiency than that of the $CNTL/MgCl_2/TiCl_4$ catalyst, based on the rate of polymerization. The effects of the CNT-filler type on the isoprene polymerization behaviors and polymer properties were investigated. The morphologies of the trans-1,4-polyisoprene (TPI)/CNT and TPI/CNTOH nanocomposites exhibited a tube-like shape, and the CNTL and CNTOH fillers were well dispersed in the TPI matrix. In addition, the thermal stability of TPI significantly increased upon the introduction of a small amount of both CNTL/CNTOH fillers (0.15 wt%), owing to the satisfactory dispersion of the CNTL/CNTOH in the TPI matrix.

Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process

  • Jana, Jayasmita;Ngo, Yen-Linh Thi;Chung, Jin Suk;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.220-237
    • /
    • 2020
  • Modern electrochemical energy devices involve generation and reduction of fuel gases through electrochemical reactions of water splitting, alcohol oxidation, oxygen reduction, etc. Initially, these processes were executed in the presence of noble metal-based catalyst that showed low overpotential and high current density. However, its high cost, unavailability, corrosion and related toxicity limited its application. The search for alternative with high stability, durability, and efficiency led scientists towards carbon nanoparticles supported catalysts which has high surface area, good electrical conductivity, tunable morphology, low cost, ease of synthesis and stability. Carbon nanoparticles are classified into two groups based on morphology, one and zero dimensional particles. Carbon nanoparticles at zero dimension, denoted as carbon dots, are less used carbon support compared to other forms. However, recently carbon dots with improved electronic properties have become popular as catalyst as well as catalyst support. This review focused on the recent advances in electrocatalytic activities of carbon dots. The mechanisms of common electrocatalytic reactions and the role of the catalysts are also discussed. The review also proposed future developments and other research directions to overcome current limitations.

Research on Co- and Mo-Based Catalysts for the Oxygen Evolution Reaction in Electrochemical Water Splitting System (전기화학적 물 분해 시스템에서 산소발생반응을 위한 Co와 Mo 기반 촉매의 최근 연구 동향)

  • Junseong Park;Won Suk Jung;Jong Chan Bu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.64-70
    • /
    • 2023
  • Global warming is getting worse since a dramatic increase in greenhouse gas emissions recently. As a result, the necessity and implementation of carbon neutrality is required more urgently. To do this, among various new and renewable energies, attention in hydrogen arises. Hydrogen as a carbon-free power source is an abundant resource on Earth and is eco-friendly. Eventually, perfectly eco-friendly hydrogen can be obtained through electrolysis of water. However, the catalyst used in the oxygen evolution reaction is rare and expensive, and has a durability issue. Consequently, the development of a non-precious metal catalyst is necessary. In this review paper, we summarize and introduce Co- and Mo- based catalysts among recently announced oxygen evolution catalysts. This will help understand the design of catalyst to increase the activity and durability of non-precious metal catalysts.

Hydrodesulfuriztion of Thiophene over Neodymium Added Nickel Catalysts (네오디뮴이 첨가된 니켈 촉매의 티오펜 탈황 반응)

  • Moon, Young-Hwan;Ihm, Son-Ki
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.913-924
    • /
    • 1996
  • In this study HDS(hydrodesulfurization) of thiophene was researched over nickel catalysts added with small amounts of neodymium which were prepared by different methods such as unsupported coprepricipitated NdNi catalysts, unsupported intermetallic $NdNi_5$ catalysts, and carbon supported NdNi catalyst. The HDS activity was remarkably increased when a small amounts of neodymium was added to unsupported coprecipitated Ni catalysts. Thus it was known that the role of Nd is important in HDS of thiophene of Ni catalysts. For the case of unsupported intermetallic $NdNi_5$, the intermetallic crystallinity was destroyed to oxide and sulfide after calcination and presulfidation respectively. The HDS activity of thiophene can be explained by surface area of unsupported catalysts. And Nd acts like as structural promoter keeping the high surface area of unsupported catalysts. The HDS activity was increased by each ten times based on 1 gr. of nickel in the order of unsupported intermetallic $NdNi_5$, unsupported coprecipitated NdNi, and carbon supported NdNi catalysts according to different preparation method of catalysts.

  • PDF

Tar Reforming for Biomass Gasification by Ru/$Al_2O_3$ catalyst (Ru/$Al_2O_3$ 촉매를 이용한 바이오매스 타르 개질 특성)

  • Park, Yeong-Su;Kim, Woo-Hyun;Keel, Sang-In;Yun, Jin-Han;Min, Tai-Jin;Roh, Seon-Ah
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.247-250
    • /
    • 2008
  • Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).

  • PDF

Synthesis and Properties of Conjugated Cyclopolymers Bearing Fluorene Derivatives

  • Gal Yeong-Soon;Jin Sung-Ho;Lee Hyo-San;Kim Sang Youl
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.491-498
    • /
    • 2005
  • Fluorene-containing, spiro-type, conjugated polymers were synthesized via the cyclopolymerization of dipropargylfluorenes (2-substituted, X=H, Br, Ac, $ NO_{2}$) with various transition metal catalysts. The polymerization of dipropargylfluorenes proceeded well using Mo-based catalysts to give a high polymer yield. The catalytic activities of the Mo-based catalysts were found to be more effective than those of W-based catalysts. The palladium (II) chloride also increased the polymer yield of the polymerization. The polymer structure of poly(dipropargylfluorene)s was characterized by such instrumental methods as NMR ($^{1}H_{-}$, $^{13}C_{-}$), IR, UV-visible spectroscopies, and elemental analysis as having the conjugated polymer backbone bearing fluorene moieties. The $^{13}C_{-}$NMR spectral data on the quaternary carbon atoms in polymers indicated that the conjugated cyclopolymers have the six-membered rings majorly. The poly(dipropargylfluorene) derivatives were completely soluble in halogenated and aromatic hydrocarbons such as methylene chloride, chloroform, benzene, toluene, and chlorobenzene. The poly(dipropargylfluorene) derivatives were thermally more stable than poly(dipropargylfluorene) itself, and X-ray diffraction analyses revealed that the polymers are mostly amorphous. The photoluminescence peaks of the polymers were observed at about 457-491 nm, depending on the substituents of fluorene moieties.

Development of Ni-based Catalyst for Hydrogen Production with Steam Reforming of Light Hydrocarbon (저급탄화수소 수증기 개질에 의한 수소 제조용 니켈계 촉매개발)

  • Kim, Dae-Hyun;Lee, Sang-Deuk;Lee, Byung-Gwon;Kim, Myung-Jun;Hong, Suk-In;Moon, Dong-Ju
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.80-87
    • /
    • 2008
  • Steam reforming of LPG was investigated over spc-Ni/MgAl catalyst in a temperature range of $600{\sim}850^{\circ}C$, feed molar ratio of $H_2O/C=1.0{\sim}3.0$, space velocity of $10,000{\sim}90,000h^{-1}$ and at atmospheric pressure. spc-Ni/MgAl catalyst was prepared by a co-precipitation method, whereas Ni/MgO and $Ni/Al_2O_3$ catalysts were prepared by an incipient wetness method. The characteristics of catalysts were analyzed by N2 Physisorption, CO chemisorption, XRD, TOF-SIMS, SEM and TEM techniques. The Ni/MgO and $Ni/Al_2O_3$ catalysts were deactivated by the formation of carbon. However, the spc-Ni/MgAl catalyst showed higher conversion and $H_2$ selectivity than the other catalysts, even though carbon was formed on the surface of the catalyst during the reaction under the tested reaction conditions.

  • PDF

Recent Progress in the Identification of Active Sites in Pyrolyzed Fe-N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction

  • Sa, Young Jin;Kim, Jae Hyung;Joo, Sang Hoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2017
  • Iron and nitrogen codoped carbon (Fe-N/C) catalysts have emerged as one of the most promising replacements for state-of-the-art platinum-based electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte fuel cells. During the last decade, significant progress has been achieved in Fe-N/C catalysts in terms of ORR activity improvement and active site identification. In this review, we focus on recent efforts towards advancing our understanding of the structure of active sites in Fe-N/C catalysts. We summarize the spectroscopic and electrochemical methods that are used to analyze active site structure in Fe-N/C catalysts, and the relationship between active site structure and ORR activity in these catalysts. We provide an overview of recently reported synthetic strategies that can generate active sites in Fe-N/C catalysts preferentially. We then discuss newly suggested active sites in Fe-N/C catalysts. Finally, we conclude this review with a brief future outlook.