Browse > Article
http://dx.doi.org/10.7473/EC.2018.53.3.158

Fabrication of CNT/MgCl2-Supported Ti-based Ziegler-Natta Catalysts for Trans-selective Polymerization of Isoprene  

Cao, Lan (School of Polymer Science and Engineering, Qingdao University of Science and Technology)
Zhang, Xiaojie (Elastomer Lab, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Wang, Xiaolei (School of Polymer Science and Engineering, Qingdao University of Science and Technology)
Zong, Chengzhong (School of Polymer Science and Engineering, Qingdao University of Science and Technology)
Kim, Jin Kuk (Elastomer Lab, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Elastomers and Composites / v.53, no.3, 2018 , pp. 158-167 More about this Journal
Abstract
In this study, in-situ trans-selective polymerization of isoprene was carried out using titanium-based Ziegler-Natta catalysts. The catalysts were prepared by high-energy ball milling. Individually Large-inner-diameter carbon nanotubes (CNTL), and hydroxylated carbon nanotubes (CNTOH), along with magnesium chloride ($MgCl_2$) were used as the carriers for the catalysts. The optimum ball-milling time for preparing the $CNT/MgCl_2/TiCl_4$ Ziegler-Natta catalysts was 4 h. The $CNTOH/MgCl_2/TiCl_4$ catalyst showed a higher efficiency than that of the $CNTL/MgCl_2/TiCl_4$ catalyst, based on the rate of polymerization. The effects of the CNT-filler type on the isoprene polymerization behaviors and polymer properties were investigated. The morphologies of the trans-1,4-polyisoprene (TPI)/CNT and TPI/CNTOH nanocomposites exhibited a tube-like shape, and the CNTL and CNTOH fillers were well dispersed in the TPI matrix. In addition, the thermal stability of TPI significantly increased upon the introduction of a small amount of both CNTL/CNTOH fillers (0.15 wt%), owing to the satisfactory dispersion of the CNTL/CNTOH in the TPI matrix.
Keywords
Ziegler-Natta catalyst; trans-polyisoprene; carbon nanotubes; ball-milling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Iijima, "Helical microtubules of graphitic carbon", Nature, 354, 56 (1991).   DOI
2 F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, "Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites", Chem. Phy. Lett., 370, 820 (2003).   DOI
3 M. H. Al-Saleh and U. Sundararaj, "Electromagnetic interference shielding mechanisms of CNT/polymer composites", Carbon, 47, 1738 (2009).   DOI
4 W. A. Curtin and B. W. Sheldon, "CNT-reinforced ceramics and metals", Mater. Today, 7, 44 (2004).
5 N. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, N. Ogiwara, K. Nakamura, N. Ishigaki, H. Kato, and S. Taruta, "Carbon nanotubes for biomaterials in contact with bone", Curr. Med. Chem., 15, 523 (2008).   DOI
6 A. A. Koval'chuk, V. G. Shevchenko, A. N. Shchegolikhin, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, "Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites", Macromolecules, 41, 7536 (2008).   DOI
7 P. Rossi, S. Suarez, F. Soldera, and F. Mucklich, "Quantitative Assessment of the Reinforcement Distribution Homogeneity in CNT/Metal Composites", Adv. Eng. Mater., 17, 1017 (2015).   DOI
8 Y. Han, X. Zhang, X. Yu, J. Zhao, S. Li, F. Liu, P. Gao, Y. Zhang, T. Zhao, and Q. Li, "Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites", Sci. REPUK, 5, 11533 (2015).   DOI
9 G. Kozlov, Z. Zhirikova, V. Aloev, and G. Zaikov, "The ultrasound processing influence on carbon nanotubes structure in polymer nanocomposites", Chem. Chem. Technol., 8, 57 (2014).   DOI
10 G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, "A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites", J. Ind. Eng. Chem., 21, 11 (2015).   DOI
11 M. L. Bhaisare, M. S. Khan, S. Pandey, G. Gedda, and H.-F. Wu, "Shape-oriented photodynamic therapy of cuprous oxide $(Cu_2O)$ nanocrystals for cancer treatment", RSC Adv., 7, 23607 (2017).   DOI
12 F. D. C. Fim, J. M. Guterres, N. R. Basso, and G. B. Galland, "Polyethylene/graphite nanocomposites obtained by in situ polymerization", J. Polym. Sci. Pol. Chem., 48, 692 (2010).   DOI
13 M. Alexandre, M. Pluta, P. Dubois, and R. Jerome, "Metallocene catalyzed polymerization of ethylene in the presence of graphite, 1. Synthesis and characterization of the composites", Macromol. Chem. Phys., 202, 2239 (2001).   DOI
14 W. Kaminsky and K. Wiemann, "Polypropene nanocomposites by metallocene/MAO catalysts", Compos., 13, 365 (2006).
15 D. Bonduel, S. Bredeau, M. Alexandre, F. Monteverde, and P. Dubois, "Supported metallocene catalysis as an efficient tool for the preparation of polyethylene/carbon nanotube nanocomposites: effect of the catalytic system on the coating morphology", J. Mater. Chem., 17, 2359 (2007).   DOI
16 W. Kaminsky, A. Funck, "In Situ Polymerization of Olefins with Nanoparticles by Metallocene-Catalysis", in: Macromol. Symp., 260, 1 (2007).   DOI
17 G. Natta, L. Porri, and A. Carbonaro, "Polymerization of conjugated diolefins by homogeneous aluminum alkyl-titanium alkoxide catalyst systems. II. 1,2-polybutadiene and 3,4-polyisoprene", Macromol. Chem. Phys., 77, 126 (1964).   DOI
18 H. Zhang, J.-H. Park, Y.-K. Moon, E.-B. Ko, D.-h. Lee, Y. Hu, X. Zhang, and K.-B. Yoon, "Preparation of $graphene/MgCl_2-supported$ Ti-based Ziegler-Natta catalysts by the coagglomeration method and their application in ethylene polymerization", Chinese J. Catal., 38, 131 (2017).   DOI
19 H.-X. Zhang, J.-H. Park, E.-B. Ko, Y.-K. Moon, D.-h. Lee, Y.- M. Hu, X.-Q. Zhang, and K.-B. Yoon, "Comparison of the properties of graphene-and graphene oxide-based polyeth- ylene nanocomposites prepared by an in situ polymerization method", RSC Adv., 6, 73013 (2016).
20 H.-x. Zhang, J.-H. Park, and K.-B. Yoon, "Excellent electrically conductive PE/rGO nanocomposites: In situ polymerization using rGO-Supported MAO cocatalysts", Compos. Sci. Technol., 154, 85 (2018).   DOI
21 L. Zhang, Y. Luo, and Z. Hou, "Unprecedented isospecific 3, 4-polymerization of isoprene by cationic rare earth metal alkyl species resulting from a binuclear precursor", J. Am. Chem. Soc., 127, 14563 (2005).
22 C. Bunn, "Molecular structure and rubber-like elasticity II. The stereochemistry of chain polymers", Proc. R. Soc. Lond. A, 180, 67 (1942).   DOI
23 X. Wang, E. N. Kalali, and D.-Y. Wang, "An in situ polymerization approach for functionalized $MoS_2/nylon-6$ nanocom-posites with enhanced mechanical properties and thermal stability", J. Mater. Chem. A, 3, 24112 (2015).
24 N. Bahri-Laleh, "Interaction of different poisons with $MgCl_2/TiCl4$ based Ziegler-Natta catalysts", Appl. Surf. Sci., 379, 395 (2016).   DOI
25 E. Kent and F. Swinney, "Properties and applications of trans-1,4-polyisoprene", Ind. Eng. Chem. Res., 5, 134 (1966).   DOI
26 R. Jones and Y. Wei, "Application of trans-1, 4 polyisoprene in orthopedic and rehabilitation medicine", J. Biomed. Mater. Res. A, 5, 19 (1971).   DOI
27 G. Y. Lin, S. M. Liu, and F. C. Dong, "Study on shape-memory mechanism and properties of NR/TPI blends", Applied Mechanics and Materials, 467, 146 (2014).
28 H. Wu, W. Zhao, H. Hu, and G. Chen, "One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites", J. Mater. Chem., 21, 8626 (2011).   DOI
29 W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of graphene by exfoliation of graphite using wet ball milling", J. Mater. Chem., 20, 5817 (2010).   DOI
30 C. De Rosa, F. Auriemma, O. Tarallo, R. Di Girolamo, E. M. Troisi, S. Esposito, D. Liguori, F. Piemontesi, G. Vitale, and G. Morini, "Tailoring the properties of polypropylene in the polymerization reactor using polymeric nucleating agents as prepolymers on the Ziegler-Natta catalyst granule", Polym. Chem-UK, 8, 655 (2017).   DOI
31 G. Liu, X. Zhang, T. Zhang, J. Zhang, P. Zhang, and W. Wang. "Determination of the content of Eucommia ulmoides gum by Variable Temperature Fourier Transform Infrared Spectrum", Polymer Testing, 63, 582 (2017).   DOI
32 A. Shanmugharaj, J. Bae, K. Y. Lee, W. H. Noh, S. H. Lee, and S. H. Ryu, "Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites", Compos. Sci. Technol., 67, 1813 (2007).   DOI