• Title/Summary/Keyword: Carbon-Neutral

Search Result 347, Processing Time 0.024 seconds

Implementation of IoT-based carbon-neutral modular smart greenhouse (IoT 기반 탄소중립 모듈형 스마트 온실 구현)

  • Seok-Keun Park;Kil-Su Han;Min-Soon Lee;Changsun Shin
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 2023
  • Recently, in digital agriculture, the types and utilization of greenhouses based on IoT are spreading, and greenhouses are being modernized, enlarged, and even factoryized using smart technology. However, a specific standardization plan has not been proposed according to the equipment for data collection in the smart greenhouse and the size or shape of the greenhouse. In other words, there is a lack of standard data for facility equipment, such as the type and number of sensors and equipment according to the size of the greenhouse, the type of greenhouse construction film and materials suitable for crops and carbon neutrality. Therefore, in this study, the suitability of the implementation, installation and quantity of IoT equipment for data collection was tested, and some standard technologies were presented through the implementation of data collection and communication methods. In addition, impact strength, tensile, tear, elongation, light transmittance, and lifespan issues for PE, PVC, and EVA, which account for about 90% of existing greenhouses, were presented, and the shape, size, and environmental problems of greenhouses made of films were presented. presented in the text. In this research paper, a standardized carbon-neutral modular smart greenhouse using nano-material film was implemented as a solution to environmental problems such as greenhouse size, farm crop type, greenhouse lifespan, and film, and its performance with existing greenhouses was analyzed and presented. Through this, we propose a modularized greenhouse that can be expanded or reduced freely without distinction in the size of the greenhouse or the shape of farmhouse crops, and the lifespan is extended and standardized. Finally, the average characteristics of greenhouses using existing PE, PVC, and EVA films and the characteristics of greenhouses using new carbon-neutral nanomaterials are compared and reviewed, and a plan to implement an expandable IoT greenhouse that supports carbon neutrality is proposed.

A Study on Estimating CO2 Emission of Port in Korea (국내 항만장비의 온실가스 배출량 산정 및 추정 연구)

  • 김보경;박민정;안승현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.110-111
    • /
    • 2023
  • As carbon neutrality has recently emerged as a global issue, the carbon neutral roadmap of MOF has been established and various strategies have been proposed to achieve carbon neutrality in the entire marine industry. The port sector is also included in the target for greenhouse gas reduction, but emissions are not being measured due to limitations in data collection and no inventory construction. For building a carbon-neutral port, it is essential to calculate and forecast emissions and set reduction targets. Accordingly, in this study, CO2 emitted from domestic port equipment was calculated according to the IPCC Guildeline's emission calculation method, and future emission was estimated. As a result of the analysis, about 420,000 tons of CO2 was emitted based on the cargo volume in 2020, and emissions are expected to continue to increase in proportion to the increase and about 720,000 tons will be emitted by 2050. In order to achieve carbon neutrality of the port, it needs to promote emission reduction by converting the power source for oil-based equipment to eco-friendly fuel. Also container and miscellaneous ports which require complicated cargo handling need to effort to reduce CO2.

  • PDF

Evaluation Methods of Carbon Reduction Contribution for Green Budget of National R&D Projects in Agricultural Sector (농업분야 탄소인지예산제도 도입을 위한 국가연구개발사업의 탄소저감 기여도 평가 방안)

  • Kim, Solhee;Han, Seunghyun;Kang, Seong-Soo;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.41-51
    • /
    • 2022
  • Carbon neutrality is emerging as a new paradigm for the international society by transiting from climate change to climate risk. This study proposes evaluation methods for the carbon reduction contribution of climate-related national R&D projects in order to introduce a green budget system in the agricultural sector. We considered the domestic and foreign green budget systems and classified national R&D projects into positive, negative, and neutral from the perspective of carbon reduction. The results of this study propose three methods to estimate the monetary costs and carbon benefits by adopting the framework for the economic evaluation of national R&D projects conducted by the Rural Development Administration. These methods support to evaluate the potential contribution to carbon reduction of national R&D projects in the agricultural sector. Finally, the proposed methods were tested and verified for the efficiency and validity of evaluating carbon reduction contribution. These evaluation methods of the carbon reduction contribution can be used as a basic methodology for the pre-budget calculations of national R&D projects and the contribution for the greenhouse gas reduction budget.

A Study on the Carbon Neutrality Scenario Model for Technology Application in Units of Space (공간 단위 탄소중립 기술적용 시나리오 모형(CATAS) 연구)

  • Park, Shinyoung;Choi, Yuyoung;Lee, Mina
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • 'Carbon-neutrality Assessment based on Technology Application Scenario (CATAS)' provides an analysis of greenhouse gas (GHG) reduction effectiveness when applying carbon-neutrality technology to areas such as energy conversion, transportation, and buildings at certain spatial levels. As for the development scope of the model, GHG emission sources were analyzed for direct GHG emissions, and the boundary between direct and indirect emissions are set according to the spatial scope. The technical scope included nine technologies and forest sinks in the transition sector that occupies the largest portion of GHG emissions in the 2050 carbon neutral scenario. The carbon neutrality rate evaluation methodology consists of four steps: ① analysis of GHG emissions, ② prediction of energy production according to technology introduction, ③ calculation of GHG reduction, and ④ calculation of carbon neutrality rate. After the web-based CATAS-BASIC was developed, an analysis was conducted by applying the new and renewable energy distribution goals presented in the 「2050 Greenhouse Gas Reduction Promotion Plan」 of the Seoul Metropolitan Government. As a result of applying solar power, hydrogen fuel cell, and hydrothermal, the introduction of technology reduced 0.43 million tCO2eq of 1.49 million tCO2eq, which is the amount of emissions from the conversion sector in Seoul, and the carbon neutrality rate in the conversion sector was analyzed to be 28.94 %.

Research on manufacturing secondary construction products using in-situ carbonation technology (In-situ 탄산화 기술이 적용된 콘크리트 2차제품 제조 연구)

  • Hye-Jin Yu;Sung-Kwan Seo;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, the basic physical properties and microstructure of concrete interlocking blocks with amount of different CO2 gas injection were analyzed according to determine the applicability of In-situ carbonation technology to construction secondary products. The amount of carbon dioxide gas injection was selected as 0, 0.1, 0.3, 0.5, 0.7 wt.% compared to cement amount. A lab-scale press equipment was designed to apply developed carbonation technology to real construction site. And mixer for stable CO2 gas injection was designed. Using the designed devices, CO2 gas injected samples were created and physical property of samples were performed. As a result of the physical property test, as the CO2 injection amount increased to 0.3 %, it showed higher strength behavior compared to the original mix. And more than 0.5 % samples showed lower strength behavior than original sample, but they satisfied the standard of concrete interlocking block. This results were determined that CO2 injection contributed to the creation of hydrates such as C-S-H. Therefore, the possibility of applying carbonation technology, which injects CO2 during mixing, to various secondary construction products was confirmed.

Analysis of mechanical properties of secondary concrete products using CO2 captured material (이산화탄소 고정 탄산화물을 적용한 콘크리트 2차 제품의 기초 특성 분석)

  • Hye-Jin Yu;Sung-Kwan Seo;Kuem-Dan Park;Hyuk-Joon Kwon;Jeong-Hwan Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • In this study, the applicability of CCMs (Carbondioxide conversion capture materials) manufactured by reacting carbon dioxide gas with DG (Desulfurization gypsum) as a cement substitute for secondary concrete products were evaluated and the basic physical properties of CCMs-mixed mortar and concrete specimens were measured to derive the optimal mixing ratio. The main chemical oxides of CCMs were CaO and SO3, and the main crystalline phases were CaSO4·2H2O, Ca(OH)2, CaCO3, and CaSO4. In addition, by the results of particle size analysis and heavy metal measurement, the applicability of CCMs as a cement substitute for secondary concrete products was confirmed. As a result of measuring the strength behavior using mortar and concrete specimens with CCMs, the compressive and flexural strength decreased as the mix ratio of CCMs increased, but requirements by the standards for interlocking blocks and retaining wall blocks, which are target products in this study, were satisfied up to the optimal mixing ratio of 10 wt.% substitution. Therefore, its applicability as a cement substitute for secondary concrete products was confirmed.

Removal Properties of Nickel and Copper ions by Activated Carbon and Carbon Nanotube (활성탄과 카본나노튜브를 이용한 수용액상의 니켈과 구리 제거 특성)

  • Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.410-416
    • /
    • 2018
  • This experiment was carried out with the purpose of testing nickel and copper adsorption abilities of multi wall carbon nanotube (MWCNT) and activated carbon. In the acidic condition, only MWCNT was effective for removing nickel and copper ion in the aqueous phase while activated carbon rarely remove them. The MWCNT and heavy metals adsorption reaction followed pseudo-first order kinetic. When the initial pH value was neutral (pH=7), nickel was rapidly removed by MWCNT and activated carbon in 4 hr (99.02 %, 80.30 %). Also, copper ion was rapidly removed by both adsorbents in 4 hr when the initial pH was 7 (100 %, 99.73 %). Increasing of adsorbent dosages affect the pH evolution and heavy metal ions removal (0 ~ 99%). Also, oxidation pretreatment enhanced the adsorption efficiency of MWCNT.

Plasma Characterization of Facing Target Sputter System for Carbon Nitride Film Deposition

  • Lee, Ji-Gong;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.98-103
    • /
    • 2004
  • The plasma properties in the facing target sputtering system during carbon nitride film deposition have been investigated. The ionized nitrogen species of the deposited films increased with increasing discharge current and were independent of the nitrogen pressure. The nitrogen content in the films did not vary significantly with the variation of nitrogen gas. The electron temperature was high close to that in the inter-cathode region, reduced as the electrons moved away from the most intense region of magnetic confinement and increased again outside this region. Calculations based on the film composition showed that the ion to carbon atom ratio at the substrate was about 50 and that the ratio between the ionized and neutral nitrogen molecules was about 0.25.

Energy Loss of Hydrogen Atom due to Charge Exchange in Neutral Particle Energy Analyzer (중성입자 에너지 분석장치에서 전하교환용 탄소박막에 의한 수소원자의 에너지 손실특성)

  • Kim, Kye-Ryung;Kim, Wan;Lee, Yong-Hyun;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.179-187
    • /
    • 1998
  • A neutral particle energy analyzer, which has the carbon stripping foil and the $90^{\circ}$ cylindrical electrostatic deflection plate, was designed and constructed for measuring of ion temperature in plasma. The energy calibration and energy resolution were studied in detail for a hydrogen ion at the $0.5{\sim}3.0\;keV$ energy using a duoplasmatron ion source. An energy of hydrogen ion to the deflection plate voltage at the peak ion count rate could be fitted by the expression $E_{o}(keV)$=3.83V(kV). The measured energy resolution, which was about 2 % at the energy of 3.0 keV and 9 % at the energy of 0.5keV, was better for the increased hydrogen ion energy. For the charge exchanged hydrogen atom due to the carbon stripping foil, the energy calibration, energy loss and resolution were measured to the $0.5{\sim}2.0{\mu}g/cm^{2}$ thickness of the carbon stripping foil. An energy of the charge exchanged hydrogen atom as a function of the deflection plate voltage and carbon foil thickness could be fitted by the expression $E_{o}(keV)=(0.53d+4.4){\cdot}V(kV)$. The energy loss was $0.23{\sim}0.89\;keV $ to the $0.5{\sim}2.0{\mu}g/cm^{2}$ carbon foil thickness and the $0.5{\sim}3.0\;keV$ energy of the incident neutral hydrogen atom, it could be fitted by the expression ${\Delta}E=(0.12d+0.27){\cdot}{E_{o}}^{1/2}(keV)$. The measured energy resolution for the neutral hydrogen atom, which was between 7 % and 35 % in this experiment region, was increased for the increasing neutral hydrogen atom energy and the decreasing carbon stripping foil thickness.

  • PDF

Kinetic Studies on the Nucleophilic Addition of Thioglycolic Acid to S-Phenyl-S-vinyl-N-p-tosylsulfilimine Derivatives (S-Phenyl-S-vinyl-N-p-tosylsulfilimine 유도체에 대한 Thioglycolic Acid의 친핵성 첨가반응에 관한 반응속도론적 연구)

  • Kim, Tae Rin;Han, Man So;Pyun, Sang Yong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.10
    • /
    • pp.663-669
    • /
    • 1996
  • The rate constants for the nucleophilic addition reactions of thioglycolic acid to vinylsulfilimine(VSI) derivatives(p-OCH3, H, p-Cl and p-Br) were determined by an ultraviolet spectrophotometric method, and rate equations which can be applied over a wide pH range were obtained. On the basis of rate equation, general base catalysis and substituent effect, a plausible addition reaction mechanism was proposed: Below pH 3.0, the reaction was proceeded via the addition of neutral molecule to carbon-carbon double bond after protonation at the nitrogen atom of the sulfilimine, and in the pH range of 3.0 to 9.0, the neutral molecule and its anion attacked to carbon-carbon double bond competitively. Above pH 9.0, sulfide anion added to the double bond (Michael type addition).

  • PDF