• Title/Summary/Keyword: Carbon-Carbon Composites

Search Result 2,123, Processing Time 0.028 seconds

The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성)

  • Cho, Ho-Jung;Ahn, In-Shup;Lee, Young-Hee;Park, Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

Finite Element Analysis on the Strength Safety of a Fuel Tank for Highly Compressed Gas Vehicle (초고압가스 차량용 연료탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.29-33
    • /
    • 2009
  • In this study, the strength safety of a composite fuel tank which is fabricated by an aluminum liner of Al6061-T6 materials and composite layers of carbon/epoxy-glass/epoxy composites has been analyzed by using a finite element analysis technique. In order to enhance the durability of the composite fuel tank, an autofrettage process was used and compressed natural gas was supplied to the prestressed fuel tank. The FEM computed results on the stress safety of autofrettaged gas tanks were compared with a criterion of design safety of US DOT-CFFC and Korean Standard. The FEM computed results indicated that the stress safety of autofrettaged fuels tanks shows instability at the dome zone and uniform stability at the parallel body, which provide an evaluation data for a strength safety of autofrettaged composite fuel tanks. The computed results show that the stress safety of 9.2 liter composite fuel tanks satisfied the safety criteria of four evaluation items, which are provided by US DOT-CFFC and KS and indicated a safe design.

  • PDF

Electrical Properties of PTFE for Circuit Breaker (차단기용 PTFE의 전기적 특성)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Lee, Tae-Hui;Myung, In-Hae;Lee, Tae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.204-207
    • /
    • 2003
  • This paper presents the electrical properties of PTFE (polytetrafluoroethylene) nozzle for circuit breaker. PTFE has been used widely as a nozzle material for circuit breaker. In the arcing environment in a circuit breaker, radiation is considered to be the major energy transport mechanism from the arc to the wall. The fraction of the radiation power is emitted out of the arc and reaches the nozzle wall, causing ablation at the surface and in the depth of the wall. The energy concentration in the material lead to the depolymerization and eventually lead to the generation of decomposed gas as well as some isolated carbon particles. The generation of the decomposed gas in the depth of the material causes inner explosion. The surface of nozzle becomes uneven. The flow of gas is not uniform due to the unevenness of the surface. Adding some fillers into PTFE is expected to be efficient for improving the endurability against radiation. In this experiment, three kinds of fillers that have endurance in the high temperature environment were added into PTFE. Dielectric constant, dissipation factor, electrical resistivity and dielectric strength of PTFE composites were investigated.

  • PDF

Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique (랭뮤어-쉐퍼 기법 이용 생체모사 폴리도파민-산화그래핀 복합체 대면적 적층 기법 연구)

  • Kim, Tae-Ho;Song, Seok Hyun;Jo, Kyung-Il;Koo, Jaseung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.110-115
    • /
    • 2019
  • Graphene oxide has been gathering interests as a way to exfoliate graphene. Since the oxidation group of graphene oxide can hydrogen bond with various functional groups, tremendous efforts have been actively conducted to apply various applications. However, graphene oxide alone cannot substantially possess the mechanical properties required for the practical application. Therefore, in this study, polydopamine, which is a bio-mimetic mussel protein-inspired material, was combined with graphene oxide to form a large-area composite membrane at the liquid-gas interface. In addition, the morphology of the polydopamine-graphene oxide composite thin film was also controlled to obtain a composite membrane having a nano-wrinkle structure. It can be expected to be used in the next generation seawater desalination membranes or carbon composites because it can form mechanically superior and sophisticated nanostructures.

Gas Permeation Study of Fuel Hose Composed as Inner Material of FKM Rubber (FKM 고무를 내층재료로 한 연료호스의 가스 투과성 연구)

  • Kim, Do-Hyun;Doh, Kyung-Hwan;Park, Hyun-Ho;Lee, Chang-Seop
    • Elastomers and Composites
    • /
    • v.40 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • To develop an automotive fuel hose suitable to the international environmental regulation, FKM rubber materials as an inner material of fuel hole were prepared with different chemical compositions. Measurement of the properties of thermal resistance, oil resistance, fuel resistance, gas permeability including fundamental properties were performed to investigate compatibility for a fuel hose material. Fundamental properties, thermal resistance, oil resistance, fuel resistance and permeability of FKM rubber materials were improved with fluorine content. When the carbon content was 20 phr, FKM compounds with fluorine contents of 66%, 09% and 71% were shown to satisfy the specification oi fuel hose. The gas permeability of NBR and FKM compounds was measured on the mixed fuel oils prepared with isooctane-toluene and gasoline-methanol. FKM rubber materials showed a small difference in penetrated amount of fuel and showed a permeability superior to NBR material. he permeability of FKM rubber materials was not influenced by the contents of fuel oil. Thermal properties of 69% FKM rubber experienced by permeability testing were not variated.

Studies on the Physical Properties of Synthetic Rubber Blends Containing Rein-forcing Fillers (보강성 충전제를 함유한 합성고무 블렌드의 물리적 특성에 관한 연구)

  • Go, Jin-Hwan;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.231-237
    • /
    • 1998
  • In order to investigate the physical properties of rubber blend compound, this experiment was carried out on the cure rate, loss tangent, reinforcement and abrasion properties of S-SBR (solution styrene-butadiene rubber) blends containing silane coupled silica and E-SBR (emulsion styrene-butadiene rubber) blends containing carbon black as a model compound. E-SBR blend showed the highest total bound rubber(TBR), while S-SBR blends showed constant TBR level regardless of rubber type. Rapid cure rate was achieved when the styrene and vinyl content of rubber microstructure decreased and TBR content of rubber compounds increased. The modulus as the index of rubber reinforcement showed the linear relation with TBR content. The large amount of PICO loss was observed when the styrene and vinyl content of rubber microstructure increased, while the small amount of PICO loss was observed when the ratio of bu-tadiene increased in the S-SBR blends with silane copuled silica. The high loss tangent at $0^{\circ}C$, the low loss tangent at $60^{\circ}C$, and the large difference of loss tangent were shown in the S-SBR blends with high styrene content compared to E-SBR blend.

  • PDF

Effects of Vulcanization Type end Temperature on Physical Properties of Natural Rubber Compounds (가황형태 및 온도가 천연고무 컴파운드의 물리적 특성에 미치는 영향)

  • Rhee, John-M.;Yoon, Chan-Ho;Huh, Yang-Il;Han, Seung-Cheol;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.173-179
    • /
    • 2000
  • Cure characteristics. tensile properties, and dynamic properties were investigated on the carbon black-filled natural rubber compounds, in which three typical vulcanization types conventional vulcanization(Conv), semi-efficient(Semi-EV), and efficient(EV) vulcanizations were used. The effects of vulcanization temperature on both the mechanical property and aging resistance of rubber compounds were also investigated. The Conv cure system showed a slightly slower rate of vulcanization than those of Semi-EV and EV ones. On the other hand, it showed a higher value in the maximum torque of cure curve. Higher tensile moduli were observed in Conv system than those in Semi-EV and EV ones, while lower elongation at break were obtained in Conv one. The tensile strength at break were found to be about the same for three cute systems. Hardness, modulus, and tensile strength decreased with increasing the vulcanization temperature, and the degree of changes in the properties was found to be smaller for EV and Semi-EV systems than that in Conv one. The EV system was found to be superior in thermal-aging resistance to Conv one.

  • PDF

Wear Particulate Matters and Physical Properties of ENR/BR Tread Compounds with Different Ratio of Silica and Carbon Black Binary Filler Systems

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.234-242
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, the properties of epoxidized natural rubber (ENR) containing a silica-friendly functional group were evaluated by considering it as a base rubber and varying the silica ratio in this binary filler system. The results showed that the wear resistance of the NR/BR blend compound decreased as the silica ratio increased. In contrast, the ENR/BR blend compound exhibited an increase in wear resistance as the silica ratio was increased. In particular, the ENR-50/BR blend compound showed the best wear resistance due to the presence of several epoxide groups. Furthermore, we observed that for tan 𝛿 at 60℃, higher epoxide content resulted in the higher Tg of the rubber, indicating a higher tan 𝛿 at 60℃. On the other hand, it was confirmed that increasing the silica ratio decreased the value of tan 𝛿 at 60℃ in all compounds. In addition, we measured the amount of wear particulate matters generated from the compound wear. These measurements confirmed that in the binary filler system, regardless of the filler type, the quantity of the generated wear particulate matters as the filler-rubber interaction increased. In conclusion, the silica filled ENR/BR blend compound exhibited the lowest generation of wear particulate matters.

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.