• Title/Summary/Keyword: Carbon tip

Search Result 189, Processing Time 0.032 seconds

Electrospinning Method-based CNF Properties Analysis and Its Application to Electrode in Electrolysis Process (lectrospinning Method 기반 CNF의 물성분석과 전기분해 공정에서 전극으로의 응용)

  • Hwang, In-Hyuck;Choi, Sung-Yeol;Lee, Sang Hyun;Lee, Ye-Hwan;Lee, Sang Moon;Kim, Sung-Chul;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.257-262
    • /
    • 2017
  • In this study, CNF (carbon nanofiber) was prepared with different process variables of electrospinning method. Morphology of CNF was observed by SEM, and main parameters to form the CNF were applied voltage, TCD, polymer concentration and heat treatment condition. Comparison of toluene removal efficiency, as applying the prepared CNF to electrodes of an electrolysis process, showed the direct effect of cathode on electrolysis as well as anode.

Laser Patterning of Vertically Grown Carbon Nanotubes (수직성장된 탄소나노튜브의 선택적 패터닝)

  • Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1171-1176
    • /
    • 2012
  • The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large-area patterning. The CNTs grown by plasma-enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip-growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

Efficient Stripping of High-dose Ion-implanted Photoresist in Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 고농도이온주입 포토레지스트의 효율적인 제거)

  • Kim, Do-Hoon;Lim, Eu-Sang;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.300-305
    • /
    • 2011
  • A mixture of supercritical carbon dioxide and a co-solvent was employed to strip a high-dose ion-implanted photoresist (HDIPR) from the surface of semiconductor wafers. The stripping efficiency was highly improved by the physical force generated from a ultrasonication tip inside the reactor. In addition, helium gas was injected in the reactor as a barrier gas before the introduction of pure supercritical $CO_2$ ($scCO_2$), which reduced the rinsing time significantly. The effect of co-solvents on the stripping efficiency was investigated. The wafer surfaces were analyzed by scanning electron microscopy and by an energy dispersive X-ray spectrometer.

Development of Resin Film Infusion Carbon Composite Structure for UAV (수지필름 인퓨전 탄소섬유 복합재료를 적용한 무인항공기용 구조체 개발)

  • Choi, Jaehuyng;Kim, Soo-Hyun;Bang, Hyung-Joon;Kim, Kook-Jin
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • Fiber reinforced composites fabricated by the resin film infusion (RFI) process, which is one of the outof-autoclave process, have the advantage of significantly reducing the processing cost in large structures while having excellent mechanical properties and uniform impregnation of the resin. In this study, we applied RFI carbon fiber composites to unmanned aerial vehicle structures to improve structural safety and achieve weight reduction. The tensile test results showed that the strength was 46% higher than that of generic T300 grade plain weave carbon fiber composites. As a result of the layup design and finite element analysis of the composite wing structure using the above material properties, the wing tip deflection is decreased by 31%, the structural safety factor is increased by 28% and the weight of the entire structure can be reduced by more than 10% compared to the reference model using glass fiber composite material.

Analysis of Interfacial Shear Strength of Fiber/Epoxy Composites by Microbond Test and Finite Element Method (미소접합시험과 유한요소법을 통한 섬유/에폭시 복합재의 계면 전단강도 해석)

  • Kang, Soo-Keun;Lee, Deok-Bo;Choi, Nak-Sam
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.7-14
    • /
    • 2006
  • Interfacial shear strength between epoxy and carbon fiber has been analyzed utilizing the microbond specimen with an epoxy micro-droplet adhered onto single carbon fiber. The interfacial shear stress distributions along the fiber/matrix interface were calculated by finite element analysis using three kinds of finite element models such as droplet model, circular-crosssection model and pull-out model. Conclusions were obtained as follows. (1) Interfacial shear stress distribution showed that larger stresses were concentrated in the fiber/matrix interface for microbond test than for pull-out test. Thus, debonding at the fiber/matrix interface during microbond test was liable to occur at low load level. (2) Microbond test showed higher interfacial strength which was caused by various effects of micro-droplet geometry and size as well as stress concentration in the region contacting with the micro-vise tip.

Relationship between Hard Disk Surface Damage and Data Loss (하드디스크의 표면파손과 데이터 손실과의 관계)

  • 이성창;박용식;전규찬;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.35-42
    • /
    • 2000
  • In recent years the recording density of hard disks has increased significantly largely due to the decreasing flying height. As a result of decreased flying height, the reliability issue become more critical. In this work the relationship between hard disk surface damage and data loss was investigated by using an actual hard disk drive. The purpose of this research was to identify the key factor which leads to data loss. It was shown that data loss is directly related to the physical damage of the Co-magnetic layer and there was no data loss when only carbon protective coating was damaged by the diamond tip.

  • PDF

Study on the Deformation Characteristics of Grain Boundary in Nanolithography Process (분자동력학을 이용한 나노 리소그래피 공정의 결정립계의 변형 거동 연구)

  • Kim, Chan-Il;Hyun, Sang-Il;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.326-331
    • /
    • 2007
  • Large-scale molecular dynamics simulations are performed to verify the deformation characteristics of grain boundaries in nanolithography process. The copper substrate made of 200,000 atoms is constructed by two grains in different crystal orientations using dynamic relaxation method. The grain boundary is located in the middle of the substrate with $45\sim135$ degree angles. The plowing tip is made of diamond-like-carbon atoms in a variety of shapes. In the simulations, the generation, propagation, and accumulation of dislocations are observed inside the substrate. From the numerical results, we address the dynamic behavior of the grain boundaries as well as the frictional characteristics in terms of the morphology of initial grain boundaries.

  • PDF

마찰가공에 있어서의 분위기 영향에 관한 연구 제 1장

  • ;Sohn, Myung-Whan
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.338-346
    • /
    • 1981
  • Honing, lapping, polishing and superfinishing are applied for a precision machining to finish the metal surface, but these precision machining are micro-cutting by hard and micro-abrasive grains. Frictional machining is the new method to finish mirrorlike surface without using those abrasive grains. The frictional machining produces high pressure and high temperature instantly by compressing a tool material against the metal surface in sliding motion. The metal surface is given plastic deformation and plastic flow by the above mentioned frictional motion, but the surface roughness of the metal surface is influenced by physical and chemical reaction in surrounding atmosphere. Therefore, the atmosphere around the metal optimum atmosphere in the frictional machining. The part 1 of the study was performed in liquid atmospheres. Diesel oil, lubricant, grease, lard oil, bean oil and cutting fluid were used as such atmospheres. Medium carbon steel SM 50 C was used as a workpiece and ceramic tip was applied as a frictional tool. The result of the experiment showed characteristic machining conditions to generate the best surface roughness in each atmospheres.

Evaluation on The Fracture Toughness of Chopped Strand Reinforced ALS Matrix Composites (촙트 스트랜드 강화 ALS계 복합재료의 파괴인성 평가)

  • 차용훈;김덕중;이연신;성백섭;채경수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • It is well known in the fracture mechanics community that the fracture toughness of brittle materials, such as ceramics, can be improved improves significantly when fibers are added into the material. This is because in presence of fibers the cracks cannot propagate as freely as it can in absence of them. Fibers bridge the gap between two adjacent surfaces of the crack and reduce the crack tip opening displacement, thus make it harder to propagate. Several investigators have experimentally studied how the length, diameter and volume fraction of fibers affect the fracture toughness of chopped strand reinforced matrix composite materials. In this paper, matrix used ALS, Arizona Lunar Simulant, types of fiber used carbon steels and stainless steels. To analyze quantitatively fiber reinforced ALS composites, experimental and analytical methods was progressed. Load-displacement curve is used to experimental method, and FEM analysis program using ABAQUS is used analytical method.

  • PDF

Low Work Function and Sharp Field Emitter Arrays by Transfer Mold Fabrication Method

  • Nakamoto, Masayuki;Sato, Genta;Shiratori, Kohji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.1049-1052
    • /
    • 2007
  • Extremely sharp and uniform Transfer Mold FEAs with thin film low work function TiN emitter material have been fabricated by controlling the thickness of the coated emitter materials to realize high efficient, high reliable and low-cost vacuum nanoelectronic devices..Their tip radii are 8.3-13.8 nm. Turn-on electric fields of the Ni FEAs and TiN-FEAs resulted in the low electric field values of $31.6\;V/{\mu}m$ and $44.2V/{\mu}m$,respectively, at the short emitter/anode distance: less than $30\;{\mu}m$, which are lower than those of conventional FE As such as Spindt type FEAs and carbon nan otube FEAs The Transfer Metal Mold fabrication method is one of the best methods of changing emit ter materials with sharp and uniform emit ter shapes.

  • PDF