• Title/Summary/Keyword: Carbon nanotube (CNT)

Search Result 761, Processing Time 0.034 seconds

Joint properties of carbon nanotube composite solder (탄소나노튜브 복합솔더의 본딩특성)

  • Ko, Young-Ki;Sa, Yoon-Ki;Choi, Yu-Ri;Lee, Chang-Woo;Yoo, Se-Hoon
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.74-74
    • /
    • 2009
  • 카본나노튜브(CNT) 복합체는 우수한 기계적 성질을 가지고 있어 다양한 분야에서 연구되고 있다. 본 연구에서는 카본나노튜브(CNT)를 간단한 볼밀공정을 사용하여 Sn3.5Ag solder ball과 SAC305 powder 표면에 혼합하고 이를 통해 접합부 특성을 관찰하였다. 볼밀을 실시하기 전 카본나노튜브(CNT)는 초음파을 이용하여 분산을 실시하였다. Sn3.5Ag solder ball의 직경은 450um이고 SAC305 powder의 직경은 약 30um이었으며 이때 사용한 볼밀볼의 직경은 각각 3mm, 1mm이다. 볼밀 회전속도는 약 300rpm이고 6, 12, 18, 24시간동안 볼밀을 실시하였다. 24시간 볼밀 후에도 solder ball과 solder powder의 모양은 크게 변하지 않았다. SEM을 통해 표면을 관찰한 결과 분산된 카본나노튜브(CNT)는 solder ball과 solder powder의 표면에서 관찰되었다. 카본나노튜브(CNT)가 삽입된 solder ball은 BGA coupon 위에 놓고 Reflow를 실시하여 접합하였고 solder powder은 flux를 첨가하여 paste로 제조하여 2012 chip에 대한 접합특성을 관찰하였다. 카본나노튜브(CNT)는 solder ball 내부의 표면근처에서 관찰되었으며 카본나노튜브(CNT)가 혼합된 solder ball은 Aging 실시 후에 IMC 두께가 카본나노튜브(CNT)가 혼합되지 않은 solder ball에 비해 두께가 작고 접합강도는 약 10% 증가하였다. 또한 카본나노튜브(CNT)가 혼합된 solder paste와 카본나노튜브(CNT)가 혼합되지 않은 solder paste를 비교한 결과 인쇄성은 모두 양호하였으며 카본나노튜브(CNT)가 혼합된 paste를 사용한 chip의 전단강도가 높게 나타났다.

  • PDF

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF

Investigation of carbon nanotube growth termination mechanism by in-situ transmission electron microscopy approaches

  • Kim, Seung Min;Jeong, Seojeong;Kim, Hwan Chul
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.228-233
    • /
    • 2013
  • In this work, we report in-situ observations of changes in catalyst morphology, and of growth termination of individual carbon nanotubes (CNTs), by complete loss of the catalyst particle attached to it. The observations strongly support the growth-termination mechanism of CNT forests or carpets by dynamic morphological evolution of catalyst particles induced by Ostwald ripening, and sub-surface diffusion. We show that in the tip-growth mode, as well as in the base-growth mode, the growth termination of CNT by dissolution of catalyst particles is plausible. This may allow the growth termination mechanism by evolution of catalyst morphology to be applicable to not only CNT forest growth, but also to other growth methods (for example, floating-catalyst chemical vapor deposition), which do not use any supporting layer or substrate beneath a catalyst layer.

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.

Waveform characteristics of ultrasonic wave generated from CNT/PDMS composite (CNT/PDMS 복합체로부터 방사된 초음파의 파형 특성)

  • Kim, Gisuk;Kim, Moojoon;Ha, Kanglyeol;Lee, Jooho;Paeng, Dong-Guk;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.459-466
    • /
    • 2019
  • When a laser pulse is irradiated on a CNT (Carbon Nanotube) and PDMS (Poly dimethylsiloxane) composite coated on a transparent PMMA (Poly methyl methacrylate) substrate, a strong ultrasonic wave is generated due to the thermoelastic effect. In this paper, the thermoacoustic theory related to the wave generation by the CNT/PDMS composite was established. The waveforms of ultrasonic waves when a laser pulse having a Gaussian waveform is irradiated on the composite with a thickness of $20{\mu}m$ were numerically simulated. From the results, it was confirmed that ultrasonic shock waves can be generated from the CNT/PDMS composite and the waveforms are changed little even if the physical properties of the composite are changed by ${\pm}20%$. It was found that the peak positive and negative pressures increase as the thermal expansion coefficient increases, or as density, heat capacity and sound speed decreased. However, those changes were not so sensitive with thermal conductivity. In addition, the physical properties of the CNT/PDMS composite fabricated in this study were estimated from the comparison of the measurement and simulation results.

Inflence of carbonization temperature on electrochemical performance of multi-walled carbon nanotube/poly(vinylidene fluoride) composite-derived carbons (탄소나노튜브/폴리비닐리덴 플루오라이드 복합체로부터 제조된 탄소의 탄화온도에 따른 전기화학적 특성)

  • Kim, Ji-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.214.2-214.2
    • /
    • 2011
  • In this work, porous carbon based electrodes are prepared by carbonization using poly(vinylidene fluoride) (PVDF)/carbon nanotube (CNT) composites to further increase the specific capacitance for supercapacitors. Electrode materials investigate the aspects of specific capacitance, pore size distribution and surface area: influence of carbonization temperatures of PVDF/CNT composites. The electrochemical properties are investigated by cyclic voltammetry, impedance spectra, and galvanostatic charge-discharge performance with in $TEABF_4$ (tetraethylammonium tetrafluoroborate)/acetonitrile as non-aqueous electrolyte. From the results, the highest value of specific capacitance of ~101 $F{\cdot}g^{-1}$ is obtained for the samples carbonized at $600^{\circ}C$. Furthermore, pore size of samples control be low 7 nm through carbonization process. It is suggested that micropores significantly contribute to the specific capacitance, resulting from improved charge transfer.

  • PDF

Dispersion Property of CNT/CB Composite influenced EEA (EEA에 미치는 CNT/CB Composite 분산 특성)

  • Yang, Hoon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.185-186
    • /
    • 2008
  • Use of the carbon nanotube is superior to general powder state materials of dispersion property. Because its ratio of diameter and length(aspect ratio) is very large, it has been known as a type of ideal nano-reinforcement composite. It used solution mixing method for specimen fabrication. To research dispersion property, we used FE-SEM(Field Emission Scanning Electron Microscope) and AFM(Atomic Force Microscope). As a result, this tendency confirms new conductivity network in which the carbon nanotube between carbon black constitute molecules shows a bond by similar constructive property.

  • PDF

Distinct Mechanisms of DNA Sensing Based on N-Doped Carbon Nanotubes with Enhanced Conductance and Chemical Selectivity

  • Kim, Han Seul;Lee, Seung Jin;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.415.1-415.1
    • /
    • 2014
  • Carrying out first-principles calculations, we study N-doped capped carbon nanotube (CNT) electrodes applied to DNA sequencing. While we obtain for the face-on nucleobase junction configurations a conventional conductance ordering where the largest signal results from guanine according to its high highest occupied molecular orbital (HOMO) level, we extract for the edge-on counterparts a distinct conductance ordering where the low-HOMO thymine provides the largest signal. The edge-on mode is shown to operate based on a novel molecular sensing mechanism that reflects the chemical connectivity between N-doped CNT caps that can act both as electron donors and electron acceptors and DNA functional groups that include the hyperconjugated thymine methyl group[1].

  • PDF

Laser Direct Patterning of Carbon Nanotube Film

  • Yun, Ji-Uk;Jo, Seong-Hak;Jang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

Gas sensing characteristics of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Kim, Young-Cho;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_{2}$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_{2}$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.