DOI QR코드

DOI QR Code

CNT/PDMS 복합체로부터 방사된 초음파의 파형 특성

Waveform characteristics of ultrasonic wave generated from CNT/PDMS composite

  • 김기석 (부경대학교 물리학과) ;
  • 김무준 (부경대학교 물리학과) ;
  • 하강렬 (부경대학교 물리학과) ;
  • 이주호 (제주대학교 대학원 의공학협동과정) ;
  • 팽동국 (제주대학교 대학원 의공학협동과정) ;
  • 최민주 (제주대학교 대학원 의공학협동과정)
  • 투고 : 2019.05.14
  • 심사 : 2019.07.12
  • 발행 : 2019.07.31

초록

투명한 PMMA (Poly methyl methacrylate) 기판 위에 탄소나노튜브(Carbon Nanotube, CNT)와 PDMS (Poly dimethylsiloxane)를 코팅한 복합체에 레이저 펄스를 조사하면 열탄성효과에 의해 수중에 강한 초음파가 발생한다. 본 논문에서는 그 초음파 발생과 관련한 열음향 이론을 정립하고, 가우시안 파형을 갖는 레이저 펄스를 두께가 $20{\mu}m$인 CNT/PDMS 복합체에 조사했을 때 어떤 파형의 초음파가 발생하는지를 시뮬레이션을 통해 파악하였다. 그 결과로부터 CNT/PDMS 복합체에서는 충격 초음파가 발생하며, 그 파의 형상은 복합체의 각종 물성 값이 ${\pm}20%$ 변하여도 크게 변하지 않는 것을 확인하였다. 그러나 정(+), 부(-)의 피크 값은 열팽창계수가 증가하거나 밀도, 열용량, 음속이 감소하면 증가하며, 열전도도에 대해서는 민감하게 변하지 않음을 알았다. 나아가, 직접 제작한 CNT/PDMS 복합체에서 방사되는 초음파의 측정 결과와 시뮬레이션 결과의 비교로부터 그 물성 값을 추정할 수 있었다.

When a laser pulse is irradiated on a CNT (Carbon Nanotube) and PDMS (Poly dimethylsiloxane) composite coated on a transparent PMMA (Poly methyl methacrylate) substrate, a strong ultrasonic wave is generated due to the thermoelastic effect. In this paper, the thermoacoustic theory related to the wave generation by the CNT/PDMS composite was established. The waveforms of ultrasonic waves when a laser pulse having a Gaussian waveform is irradiated on the composite with a thickness of $20{\mu}m$ were numerically simulated. From the results, it was confirmed that ultrasonic shock waves can be generated from the CNT/PDMS composite and the waveforms are changed little even if the physical properties of the composite are changed by ${\pm}20%$. It was found that the peak positive and negative pressures increase as the thermal expansion coefficient increases, or as density, heat capacity and sound speed decreased. However, those changes were not so sensitive with thermal conductivity. In addition, the physical properties of the CNT/PDMS composite fabricated in this study were estimated from the comparison of the measurement and simulation results.

키워드

GOHHBH_2019_v38n4_459_f0001.png 이미지

Fig. 1. Schematics of a laser generated ultrasound transducer with CNT/PDMS composite.

GOHHBH_2019_v38n4_459_f0002.png 이미지

Fig. 2. Waveforms of the laser pulse (a) and the estimated waveform for thermal source (b).

GOHHBH_2019_v38n4_459_f0003.png 이미지

Fig. 3. Simulated waveform (a) and its variation with specific heat capacity (b), thermal conductivity (c), thermal expansion (d), sound speed (e) and density (f).

GOHHBH_2019_v38n4_459_f0004.png 이미지

Fig. 4. Positive peak (a) and negative peak (b) variation with physical parameters of the shockwave.

GOHHBH_2019_v38n4_459_f0005.png 이미지

Fig. 5. Schematics of the fabricated CNT/PDMS composite and the acoustic wave measurement system.

GOHHBH_2019_v38n4_459_f0006.png 이미지

Fig. 6. Measured and simulated waveforms (a) and their amplitude spectra (b).

Table 1. Physical properties of materials.[10]

GOHHBH_2019_v38n4_459_t0001.png 이미지

Table 2. Obtained physical properties of the CNT/PDMS composite by simulation.

GOHHBH_2019_v38n4_459_t0002.png 이미지

참고문헌

  1. H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, "Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation," Appl. Phys. Lett., 97, 234104 (2010). https://doi.org/10.1063/1.3522833
  2. R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, "Lasergenerated ultrasound with optical fibres using functionalised carbon nanotube composite coatings," Appl. Phys. Lett., 104, 173502 (2014). https://doi.org/10.1063/1.4873678
  3. B. Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, "A laser ultrasound transducer using carbon nanofibers-poly dimethylsiloxane composite thin film," Appl. Phys. Lett. 106, 021902 (2015). https://doi.org/10.1063/1.4905659
  4. H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, "Nanostructural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation," Nanoscale 7, 14460-14468 (2015). https://doi.org/10.1039/C5NR03769G
  5. S. L. Chen, "Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging," Appl. Sci. 7, 25 (2017). https://doi.org/10.3390/app7010025
  6. H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, "Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy," Sci. Rep. 2, 989 (2012). https://doi.org/10.1038/srep00989
  7. X. Fan, Y. Baek, K. Ha, M. Kim, J. Kim, D. Kim, H. W. Kang, and J. Oh, "Propagation characteristics of shock waves from a plane carbon-nanotube-coated optoacoustic transducer in water," Jpn. J. Appl. Phys. 56, 07JB05 (2017). https://doi.org/10.7567/JJAP.56.07JB05
  8. X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, Fabrication and application of a CNT/PDMS coated optoacoustic film transducer," Jpn. J. Appl. Phys. 57, 07LB10 (2018). https://doi.org/10.7567/JJAP.57.07LB10
  9. L. H. Tong, C. W. Lim, and Y. C. Li, "Generation of High-Intensity Focused Ultrasound by Carbon Nanotube Opto-Acoustic Lens," J. Appl. Mech. 81, 081014 (2014). https://doi.org/10.1115/1.4027752
  10. C. Moon, X. Fan, K. Ha, and D. Kim, "Generation of planar blast waves using carbon nanotubes-poly-dimethysiloxane optoacoustic transducer," AIP Advances., 7, 015107 (2017). https://doi.org/10.1063/1.4974748
  11. G. C. Wetsel, " Photothermal generation of thermoelastic waves in composite media," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 33, 450-461 (1986). https://doi.org/10.1109/T-UFFC.1986.26856
  12. B. A. Auld, Acoustic Fields and Waves in Solid (John Wiley & Sons, New York, 1998), pp. 167-185.
  13. C. B. Scruby and L. E. Drain, Laser Ultrasonics Techniques and Applications (Adam Hilger, New York, 1998), pp. 223-324.
  14. Z. Wang and X. Ye, "An investigation on piezoresistive behavior of carbon nanotube/polymer composites: II. Positive piezoresistive effect," Nanotechnology, 25, 285502 (2014). https://doi.org/10.1088/0957-4484/25/28/285502