• Title/Summary/Keyword: Carbon ion radiation therapy

Search Result 15, Processing Time 0.023 seconds

Carbon Ion Therapy: A Review of an Advanced Technology

  • Kim, Jung-in;Park, Jong Min;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.71-80
    • /
    • 2020
  • This paper provides a brief review of the advanced technologies for carbon ion radiotherapy (CIRT), with a focus on current developments. Compared to photon beam therapy, treatment using heavy ions, especially a carbon beam, has potential advantages due to its physical and biological properties. Carbon ion beams with high linear energy transfer demonstrate high relative biological effectiveness in cell killing, particularly at the Bragg peak. With these unique properties, CIRT allows for accurate targeting and dose escalation for tumors with better sparing of adjacent normal tissues. Recently, the available CIRT technologies included fast pencil beam scanning, superconducting rotating gantry, respiratory motion management, and accurate beam modeling for the treatment planning system. These techniques provide precise treatment, operational efficiency, and patient comfort. Currently, there are 12 CIRT facilities worldwide; with technological improvements, they continue to grow in number. Ongoing technological developments include the use of multiple ion beams, effective beam delivery, accurate biological modeling, and downsizing the facility.

Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy (첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰)

  • Choi, Sang Gyu
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.413-422
    • /
    • 2019
  • Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

Review of the Existing Relative Biological Effectiveness Models for Carbon Ion Beam Therapy

  • Kim, Yejin;Kim, Jinsung;Cho, Seungryong
    • Progress in Medical Physics
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Hadron therapy, such as carbon and helium ions, is increasingly coming to the fore for the treatment of cancers. Such hadron therapy has several advantages over conventional radiotherapy using photons and electrons physically and clinically. These advantages are due to the different physical and biological characteristics of heavy ions including high linear energy transfer and Bragg peak, which lead to the reduced exit dose, lower normal tissue complication probability and the increased relative biological effectiveness (RBE). Despite the promising prospects on the carbon ion radiation therapy, it is in dispute with which bio-mathematical models to calculate the carbon ion RBE. The two most widely used models are local effect model and microdosimetric kinetic model, which are actively utilized in Europe and Japan respectively. Such selection on the RBE model is a crucial issue in that the dose prescription for planning differs according to the models. In this study, we aim to (i) introduce the concept of RBE, (ii) clarify the determinants of RBE, and (iii) compare the existing RBE models for carbon ion therapy.

Measurement of Neutron Production Double-differential Cross-sections on Carbon Bombarded with 430 MeV/Nucleon Carbon Ions

  • Itashiki, Yutaro;Imahayashi, Youichi;Shigyo, Nobuhiro;Uozumi, Yusuke;Satoh, Daiki;Kajimoto, Tsuyoshi;Sanami, Toshiya;Koba, Yusuke;Matsufuji, Naruhiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.344-349
    • /
    • 2016
  • Background: Carbon ion therapy has achieved satisfactory results. However, patients have a risk to get a secondary cancer. In order to estimate the risk, it is essential to understand particle transportation and nuclear reactions in the patient's body. The particle transport Monte Carlo simulation code is a useful tool to understand them. Since the code validation for heavy ion incident reactions is not enough, the experimental data of the elementary reaction processes are needed. Materials and Methods: We measured neutron production double-differential cross-sections (DDXs) on a carbon bombarded with 430 MeV/nucleon carbon beam at PH2 beam line of HIMAC facility in NIRS. Neutrons produced in the target were measured with NE213 liquid organic scintillators located at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. Results and Discussion: Neutron production double-differential cross-sections for carbon bombarded with 430 MeV/nucleon carbon ions were measured by the time-of-flight method with NE213 liquid organic scintillators at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. The cross sections were obtained from 1 MeV to several hundred MeV. The experimental data were compared with calculated results obtained by Monte Carlo simulation codes PHITS, Geant4, and FLUKA. Conclusion: PHITS was able to reproduce neutron production for elementary processes of carbon-carbon reaction precisely the best of three codes.

Basics of particle therapy I: physics

  • Park, Seo-Hyun;Kang, Jin-Oh
    • Radiation Oncology Journal
    • /
    • v.29 no.3
    • /
    • pp.135-146
    • /
    • 2011
  • With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfi ll the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

Estimation of Dose Distribution on Carbon Ion Therapy Facility using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 중입자 치료실의 선량분포 추정)

  • Song, Yongkeun;Heo, Seunguk;Cho, Gyuseok;Choi, Sanghyun;Han, Moojae;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.437-442
    • /
    • 2017
  • Heavy ion therapy has a high cure rate for cancer cell. So many countries are introducing heavy ion therapy facility. When treating a cancer using heavy ion therapy, neutrons and gamma rays are generated and affect electronic equipment. A budget of about KRW 200 billion is needed to build a heavy ion therapy facility, and it takes more than five years to build it. Therefore it is important to observe the dose distribution in the treatment room using the monte carlo simulation before construction. In this study, we used the FLUKA of monte carlo simulation to investigate the dose distribution in the heavy ion treatment room.

Evaluation of Dose Variation according to Air Gap in Thermoplastic Immobilization Device in Carbon Ion (탄소입자 치료 시 열가소성 고정기구의 공기층에 따른 선량 변화 평가)

  • Ye-jin Na;Ji-Won Jang;Se-Wuk Jang;Hyo-Kuk Park;Sang-Kyu Lee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: The purpose of this study is to find out the dose variation according to thickness of the air gap between the patient's body surface and immobilization device in the treatment plan. Materials and Methods : Four conditions were created by adjusting the air gap thickness using 5 mm bolus, ranging from 0 mm to 3 mm bolus. Immobilization was placed on top in each case. And computed tomography was used to acquire images. The treatment plan that 430 cGy (Relative Biological Effectiveness,RBE) is irradiated 6 times and the dose of 2580 cGy (RBE) is delivered to 95% of Clinical Target Volume (CTV). The dose on CTV was evaluated by Full Width Half Maximum (FWHM) of the lateral dose profile and skin dose was evaluated by Dose Volume Histogram (DVH). Result: Results showed that the FWHM values of the lateral dose profile of CTV were 4.89, 4.86, 5.10, and 5.10 cm. The differences in average values at the on the four conditions were 3.25±1.7 cGy (RBE) among D95% and 1193.5±10.2 cGy (RBE) among D95% respectively. The average skin volume at 1% of the prescription dose was 83.22±4.8%, with no significant differences in both CTV and skin. Conclusion: When creating a solid-type immobilization device for carbon particle therapy, a slight air gap is recommended to ensure that it does not extend beyond the dose application range of the CTV.

  • PDF

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

Monte Carlo Investigation of Dose Enhancement due to Gold Nanoparticle in Carbon-12, Helium-4, and Proton Beam Therapy

  • Sang Hee Ahn
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.114-120
    • /
    • 2022
  • Purpose: Particle beam therapy is advantageous over photon therapy. However, adequately delivering therapeutic doses to tumors near critical organs is difficult. Nanoparticle-aided radiation therapy can be used to alleviate this problem, wherein nanoparticles can passively accumulate at higher concentrations in the tumor tissue compared to the surrounding normal tissue. In this study, we investigate the dose enhancement effect due to gold nanoparticle (GNP) when Carbon-12, He-4, and proton beams are irradiated on GNP. Methods: First, monoenergetic Carbon-12 and He-4 ion beams of energy of 283.33 MeV/u and 150 MeV/u, respectively, and a proton beam of energy of 150 MeV were irradiated on a water phantom of dimensions 30 cm×30 cm×30 cm. Subsequently, the secondary-particle information generated near the Bragg peak was recorded in a phase-space (phsp) file. Second, the obtained phsp file was scaled down to a nanometer scale to irradiate GNP of diameter 50 nm located at the center of a 4 ㎛×4 ㎛×4 ㎛ water phantom. The dose enhancement ratio (DER) was calculated in intervals of 1 nm from the GNP surface. Results: The DER of GNP computed at 1 nm from the GNP surface was 4.70, 4.86, and 4.89 for Carbon-12, He-4, and proton beams, respectively; the DER decreased rapidly with increasing distance from the GNP surface. Conclusions: The results indicated that GNP can be used as radiosensitizers in particle beam therapy. Furthermore, the dose enhancement effect of the GNP absorbed by tumor cells can aid in delivering higher therapeutic doses.

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.