Browse > Article
http://dx.doi.org/10.14316/pmp.2020.31.3.71

Carbon Ion Therapy: A Review of an Advanced Technology  

Kim, Jung-in (Department of Radiation Oncology, Seoul National University Hospital)
Park, Jong Min (Department of Radiation Oncology, Seoul National University Hospital)
Wu, Hong-Gyun (Department of Radiation Oncology, Seoul National University Hospital)
Publication Information
Progress in Medical Physics / v.31, no.3, 2020 , pp. 71-80 More about this Journal
Abstract
This paper provides a brief review of the advanced technologies for carbon ion radiotherapy (CIRT), with a focus on current developments. Compared to photon beam therapy, treatment using heavy ions, especially a carbon beam, has potential advantages due to its physical and biological properties. Carbon ion beams with high linear energy transfer demonstrate high relative biological effectiveness in cell killing, particularly at the Bragg peak. With these unique properties, CIRT allows for accurate targeting and dose escalation for tumors with better sparing of adjacent normal tissues. Recently, the available CIRT technologies included fast pencil beam scanning, superconducting rotating gantry, respiratory motion management, and accurate beam modeling for the treatment planning system. These techniques provide precise treatment, operational efficiency, and patient comfort. Currently, there are 12 CIRT facilities worldwide; with technological improvements, they continue to grow in number. Ongoing technological developments include the use of multiple ion beams, effective beam delivery, accurate biological modeling, and downsizing the facility.
Keywords
Carbon ion radiation therapy; Advanced techniques; Superconducting gantry; Effective beam delivery; Advanced beam modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Inaniwa T, Kanematsu N, Matsufuji N, Kanai T, Shirai T, Noda K, et al. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys Med Biol. 2015;60:3271-3286.   DOI
2 Kanematsu N, Endo M, Futami Y, Kanai T, Asakura H, Oka H, et al. Treatment planning for the layer-stacking irradiation system for three-dimensional conformal heavy-ion radiotherapy. Med Phys. 2002;29:2823-2829.   DOI
3 Pommier P, Lievens Y, Feschet F, Borras JM, Baron MH, Shtiliyanova A, et al. Simulating demand for innovative radiotherapies: an illustrative model based on carbon ion and proton radiotherapy. Radiother Oncol. 2010;96:243-249.   DOI
4 Torikoshi M, Minohara S, Kanematsu N, Komori M, Kanazawa M, Noda K, et al. Irradiation system for HIMAC. J Radiat Res. 2007;48 Suppl A:A15-A25.   DOI
5 Minohara S, Kanai T, Endo M, Noda K, Kanazawa M. Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47:1097-1103.   DOI
6 Castro JR, Linstadt DE, Bahary JP, Petti PL, Daftari I, Collier JM, et al. Experience in charged particle irradiation of tumors of the skull base: 1977-1992. Int J Radiat Oncol Biol Phys. 1994;29:647-655.   DOI
7 Kamada T, Tsujii H, Blakely EA, Debus J, De Neve W, Durante M, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol. 2015; 16:e93-e100.   DOI
8 Combs SE, Ellerbrock M, Haberer T, Habermehl D, Hoess A, Jakel O, et al. Heidelberg Ion Therapy Center (HIT): initial clinical experience in the first 80 patients. Acta Oncol. 2010;49:1132-1140.   DOI
9 Linz U. Physical and biological rationale for using Ions in therapy. Ion beam therapy. Berlin, Heidelberg: Springer; 2012.
10 Chu W, Ludewigt B, Renner T. Instrumentation for treatment of cancer using proton and light-ion beams. Rev Sci Instrum. 1993;64:2055-2122.   DOI
11 Kramer M, Scifoni E, Schmitz F, Sokol O, Durante M. Overview of recent advances in treatment planning for ion beam radiotherapy. Eur Phys J D. 2014;68:306.   DOI
12 Kopp B, Mein S, Dokic I, Harrabi S, Bohlen TT, Haberer T, et al. Development and validation of single field multi-ion particle therapy treatments. Int J Radiat Oncol Biol Phys. 2020;106:194-205.   DOI
13 Eickhoff H, Bar R, Dolinskii A, Haberer T, Schlitt B, Spiller P, et al. HICAT- The German hospital-based light ion cancer therapy project. Paper presented at: Proceedings of the 2003 Particle Accelerator Conference; 2003 May 12-16; Portland, USA. p. 694-698.
14 Kanai T, Kanematsu N, Minohara S, Komori M, Torikoshi M, Asakura H, et al. Commissioning of a conformal irradiation system for heavy-ion radiotherapy using a layerstacking method. Med Phys. 2006;33:2989-2997.   DOI
15 Borloni E, Rossi S. The CNAO project and the status of the construction. Paper presented at: Proceedings of NIRS-CNAO Joint Symposium on Carbon Ion Radiotherapy; 2006 Nov 27-28; Milano, Italy.
16 Furukawa T, Inaniwa T, Sato S, Tomitani T, Minohara S, Noda K, et al. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys. 2007;34:1085-1097.   DOI
17 Hara Y, Furukawa T, Mizushima K, Inaniwa T, Saotome N, Tansho R, et al. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC. Nucl Instrum Methods Phys Res Sect B. 2017;406:343-346.   DOI
18 Kim J, Yoon M. Design of a compact gantry for carbon-ion beam therapy. Phys Rev Accel Beams. 2019;22:101601.   DOI
19 Tessonnier T, Marcelos T, Mairani A, Brons S, Parodi K. Phase space generation for proton and carbon ion beams for external users' applications at the Heidelberg Ion Therapy Center. Front Oncol. 2015;5:297.
20 Tessonnier T, Mairani A, Brons S, Sala P, Cerutti F, Ferrari A, et al. Helium ions at the Heidelberg Ion Beam Therapy Center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements. Phys Med Biol. 2017;62:6784-6803.   DOI
21 Inaniwa T, Suzuki M, Hyun Lee S, Mizushima K, Iwata Y, Kanematsu N, et al. Experimental validation of stochastic microdosimetric kinetic model for multi-ion therapy treatment planning with helium-, carbon-, oxygen-, and neonion beams. Phys Med Biol. 2020;65:045005.   DOI
22 Saunders W, Castro JR, Chen GT, Collier JM, Zink SR, Pitluck S, et al. Helium-ion radiation therapy at the Lawrence Berkeley Laboratory: recent results of a Northern California Oncology Group Clinical Trial. Radiat Res Suppl. 1985; 8:S227-S234.   DOI
23 Kanai T, Endo M, Minohara S, Miyahara N, Koyama-ito H, Tomura H, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44:201-210.   DOI
24 Futami Y, Kanai T, Fujita M, Tomura H, Higashi A, Matsufuji N, et al. Broad-beam three-dimensional irradiation system for heavy-ion radiotherapy at HIMAC. Nucl Instrum Methods Phys Res Sect A. 1999;430:143-153.   DOI
25 Wilson RR. Radiological use of fast protons. Radiology. 1946;47:487-491.   DOI
26 Lawrence JH, Tobias CA, Born JL, McCombs RK, Roberts JE, Anger HO, et al. Pituitary irradiation with high-energy proton beams: a preliminary report. Cancer Res. 1958;18: 121-134.
27 Tsujii H, Mizoe JE, Kamada T, Baba M, Kato S, Kato H, et al. Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiother Oncol. 2004;73 Suppl 2:S41-S49.
28 Particle Therapy Co-Operative Group. Particle therapy facilities in clinical operation. Particle Therapy Co-Operative Group, 2018 [cited 2020 May 5]. Available from: https://www.ptcog.ch/index.php/facilities-in-operation.
29 Haberer T, Becher W, Schardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl Instrum Methods Phys Res Sect A. 1993;330:296-305.   DOI
30 Combs SE, Jakel O, Haberer T, Debus J. Particle therapy at the Heidelberg Ion Therapy Center (HIT)- integrated research-driven university-hospital-based radiation oncology service in Heidelberg, Germany. Radiother Oncol. 2010;95:41-44.   DOI
31 Chen GT, Castro JR, Quivey JM. Heavy charged particle radiotherapy. Annu Rev Biophys Bioeng. 1981;10:499-529.   DOI
32 Kraft G, Kraft-Weyrather W, Ritter S, Scholz M, Stanton J. Cellular and subcellular effect of heavy ions: a comparison of the induction of strand breaks and chromosomal aberration with the incidence of inactivation and mutation. Adv Space Res. 1989;9:59-72.
33 Todd P. Fractionated heavy ion irradiation of cultured human cells. Radiat Res. 1968;34:378-389.   DOI
34 Kempe J, Gudowska I, Brahme A. Depth absorbed dose and LET distributions of therapeutic 1H, 4He, 7Li, and 12C beams. Med Phys. 2007;34:183-192.   DOI
35 Inaniwa T, Furukawa T, Kanematsu N, Mori S, Mizushima K, Sato S, et al. Evaluation of hybrid depth scanning for carbon-ion radiotherapy. Med Phys. 2012;39:2820-2825.   DOI
36 Furukawa T, Hara Y, Mizushima K, Saotome N, Tansho R, Saraya Y, et al. Development of NIRS pencil beam scanning system for carbon ion radiotherapy. Nucl Instrum Methods Phys Res Sect B. 2017;406:361-367.   DOI
37 Lomax A. Intensity modulation methods for proton radiotherapy. Phys Med Biol. 1999;44:185-205.   DOI
38 Furukawa T, Inaniwa T, Sato S, Shirai T, Takei Y, Takeshita E,et al. Performance of the NIRS fast scanning system for heavy-ion radiotherapy. Med Phys. 2010;37:5672-5682.   DOI
39 Lyman JT, Howard J. Dosimetry and instrumentation for helium and heavy ions. Int J Radiat Oncol Biol Phys. 1977;3: 81-85.   DOI
40 Kantemiris I, Karaiskos P, Papagiannis P, Angelopoulos A. Dose and dose averaged LET comparison of 1H, 4He, 6Li, 8Be, 10B, 12C, 14N, and 16O ion beams forming a spread-out Bragg peak. Med Phys. 2011;38:6585-6591.   DOI
41 Kramer M, Scifoni E, Schuy C, Rovituso M, Tinganelli W, Maier A, et al. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Med Phys. 2016;43:1995.   DOI
42 Marafini M, Paramatti R, Pinci D, Battistoni G, Collamati F, De Lucia E, et al. Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by 4 He ion beams in a PMMA target. Phys Med Biol. 2017;62:1291-1309.   DOI
43 Phillips TL, Fu KK, Curtis SB. Tumor biology of helium and heavy ions. Int J Radiat Oncol Biol Phys. 1977;3:109-113.   DOI
44 Tessonnier T, Mairani A, Brons S, Haberer T, Debus J, Parodi K. Experimental dosimetric comparison of 1H, 4He, 12C and 16O scanned ion beams. Phys Med Biol. 2017;62:3958-3982.   DOI
45 Inaniwa T, Kanematsu N, Noda K, Kamada T. Treatment planning of intensity modulated composite particle therapy with dose and linear energy transfer optimization. Phys Med Biol. 2017;62:5180-5197.   DOI