• Title/Summary/Keyword: Carbon film

Search Result 1,327, Processing Time 0.031 seconds

Carbon strain sensor using Nd: YAG laser Direct Writing (Nd:YAG Laser 직접 각인을 이용한 Carbon 스트레인 센서)

  • Joo, Donghyun;Yoon, Sangwoo;Kim, Joohan;Park, Woo-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • Nd:YAG laser was used to carbonize polyimide films to produce carbon films. This is a simple manufacturing process to fabricate low cost sensors. By applying this method, we studied characteristics of flexible and low-cost piezoresistive. Previously, many studies focused on carbonization of polyimide using $CO_2$ laser with wavelength of $10.6{\mu}m$. In this paper, carbonization (carbonization process) was performed on polyimide films using an Nd:YAG laser with a wavelength of $1.064{\mu}m$. In order to increase the resolution, we optimized the laser conditions of the power density ($W/cm^2$) and the beam scan rate. In previous studies using $CO_2$ laser, the minimum line width was $140{\sim}220{\mu}m$ but in this study, carbon line width was reduced to $35{\sim}40{\mu}m$. The initial sheet resistance of the carbon sensor was $100{\sim}300{\Omega}/{\square}$. The resistance decreased by 30% under stretched with a curvature radius of 21 R. The calculated gauge factor was 56.6. This work offers a simple, highly flexible, and low-cost process to fabricate piezoresistive sensors.

Implementation of IoT-based carbon-neutral modular smart greenhouse (IoT 기반 탄소중립 모듈형 스마트 온실 구현)

  • Seok-Keun Park;Kil-Su Han;Min-Soon Lee;Changsun Shin
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 2023
  • Recently, in digital agriculture, the types and utilization of greenhouses based on IoT are spreading, and greenhouses are being modernized, enlarged, and even factoryized using smart technology. However, a specific standardization plan has not been proposed according to the equipment for data collection in the smart greenhouse and the size or shape of the greenhouse. In other words, there is a lack of standard data for facility equipment, such as the type and number of sensors and equipment according to the size of the greenhouse, the type of greenhouse construction film and materials suitable for crops and carbon neutrality. Therefore, in this study, the suitability of the implementation, installation and quantity of IoT equipment for data collection was tested, and some standard technologies were presented through the implementation of data collection and communication methods. In addition, impact strength, tensile, tear, elongation, light transmittance, and lifespan issues for PE, PVC, and EVA, which account for about 90% of existing greenhouses, were presented, and the shape, size, and environmental problems of greenhouses made of films were presented. presented in the text. In this research paper, a standardized carbon-neutral modular smart greenhouse using nano-material film was implemented as a solution to environmental problems such as greenhouse size, farm crop type, greenhouse lifespan, and film, and its performance with existing greenhouses was analyzed and presented. Through this, we propose a modularized greenhouse that can be expanded or reduced freely without distinction in the size of the greenhouse or the shape of farmhouse crops, and the lifespan is extended and standardized. Finally, the average characteristics of greenhouses using existing PE, PVC, and EVA films and the characteristics of greenhouses using new carbon-neutral nanomaterials are compared and reviewed, and a plan to implement an expandable IoT greenhouse that supports carbon neutrality is proposed.

The Roles of Reinforcing Fibers on the Performance of Automotive Brake Pads (자동차용 마찰재의 성능에 미치는 강화섬유의 역할)

  • Lim, Hyun-Woo;Yoon, Ho-Gyu;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.173-179
    • /
    • 2000
  • The friction and wear characteristics of brake friction materials reinforced with aramid fiber, carbon fiber, glass fiber, and potassium titanate whiskers were investigated using a pad-on-disk type friction tester. In particular, the morphology of rubbing surfaces was carefully investigated to correlate the friction performance and properties of transfer films. The aramid fiber reinforced specimen showed severe oscillation of friction coefficient at low speed and low applied pressure. The carbon fiber reinforced specimen showing better friction stability exhibited uniform and stable transfer film than any other specimens. The glass fiber reinforced specimen showed unstable friction changes at high speed and high-applied pressure and the non-uniform transfer film was observed in both friction material and rotor surface. The potassium titanate whiskers reinforced specimen showed stable coherent transfer film. The wear test exhibited the potassium titanate whiskers reinforced specimen was lowest in wear amount and glass fiber reinforced specimen showed the severe wear.

  • PDF

Electrical and Optical Property of Single-Wall Carbon Nanotubes Films (단일벽 탄소나노튜브 필름의 전기적 및 광학적 특성)

  • Oh, Dong-Hoon;Kang, Young-Jin;Jung, Hyuck;Song, Hye-Jin;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.488-493
    • /
    • 2009
  • Thin films of single-wall carbon nanotubes (SWNT) with various thicknesses were fabricated, and their optical and electrical properties were investigated. The SWNTs of various thicknesses were directly coated in the arc-discharge chamber during the synthesis and then thermally and chemically purified. The crystalline quality of the SWNTs was improved by the purification processes as determined by Raman spectroscopy measurements. The resistance of the film is the lowest for the chemically purified SWNTs. The resistance vs. thickness measurements reveal the percolation thickness of the SWNT film to be $\sim$50 nm. Optical absorption coefficient due to Beer-Lambert is estimated to be $7.1{\times}10^{-2}nm^{-1}$. The film thickness for 80% transparency is about 32 nm, and the sheet resistance is 242$\Omega$/sq. The authors also confirmed the relation between electrical conductance and optical conductance with very good reliability by measuring the resistance and transparency measurements.

Deposition of Diamond Film by Hydrogen-oxyacetylene Combustion Flame (수소-산소아세틸렌 연소염에 의한 다이아몬드 필름의 증착)

  • Ko, Chan-kyoo;Kim, Ki-young;Park, Dong-wha
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.84-91
    • /
    • 1997
  • Diamond film was deposited on Mo substrate at atmospheric pressure using a combustion flame apparatus with the addition of $H_2$. With the substrate temperature, the nucleation density of the substrate was increased. At temperatures above $1000^{\circ}C$, some of diamond was partly converted into graphite and etched by hydrogen atoms. With an increase of the $C_2H_2/O_2$ ratio, the nucleation density was increased. But crystals were cauliflower-shaped and a large number of amorphous carbon were deposited. With the addition of $H_2$, the nucleation density of diamond was increased by the improvement of surface activity. Diamond film of high crystallinity was deposited by etching amorphous carbon. With an increase of deposition time, the thickness of diamond film was increased.

  • PDF

Thermal Stability of Silicon-containing Diamond-like Carbon Film (실리콘 함유 DLC 박막의 내열특성)

  • Kim, Sang-Gweon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • Diamond-like carbon (DLC) coating was studied to be a good tribological problem-solver due to its low friction characteristics and high hardness. However, generally hydrogenated DLC film has shown a weak thermal stability above $300^{\circ}C$. However, the silicon doping DLC process by DC pulse plasma enhanced chemical vapor deposition (PECVD) for the new DLC coating which has a good characterization with thermal stability at high temperature itself has been observed. And we were discussed a process for optimizing silicon content to promote a good thermal stability using various tetramethylsilane (TMS) and methane gas at high-temperature. The chemical compositions of silicon-containing DLC film was analyzed using X-ray photoelectron spectroscopy (XPS) before and after heat treatment. Raman spectrum analysis showed the changed structure on the surface after the high-temperature exposure testing. In particular, the hardness of silicon-containing DLC film showed different values before and after the annealing treatment.

Direct electrochemistry of hemoglobin at carbon electrode modified with lipid film and its application as a $H_{2}O_{2}$ sensor (Lipid Film에 수식된 헤모글로빈의 전기화학적 특성과 $H_{2}O_{2}$응답특성)

  • Lee, Dong-Yun;Park, Sang-Hyun;Choi, Yong-Sung;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.93-94
    • /
    • 2006
  • In this research, the enhancement of electron-transfer activity of hemoglobin (Hb) in dodecanoic acid film was investigated for the first time. This type of composite film was made on glassy carbon electrode by casting method. Cyclic voltammetric result of the modified electrode displays a well defined redox peaks which was attributed to the direct electrochemical response of Rb. Our results illustrate that Rb exchange electrons directly with electrode and exhibits the characteristics of peroxidase. When we apply this modified electrode as a biosensor, it gives excellent performances in the electrocatalytic reduction of hydrogen peroxide ($H_{2}O_{2}$). Through the optimal conditions, the proposed biosensor shows the linear range for H2O2 determination was from $1{\times}10^{-5}$ to $1.25{\times}10^{-4}mol/L$ with a detection limit of $1{\times}10^{-7}mol/L$. The biosensor retained more than 90% of the initial response after 14 days.

  • PDF

Generation of Tilt in the nematic liquid crystal using a-C:H Thin Films Deposited Using PECVD Method (PECVD 장치를 사용하여 증착된 a-C:H 박막을 이용한 네마틱 액정의 틸트 발생)

  • Park, Chang-Joon;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Ahn, Han-Jin;Kim, Kyeong-Chan;Baik, Hong-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.469-472
    • /
    • 2003
  • The nematic liquid crystal (NLC) aligning capabilities using a-C:H thin film deposited at the three kinds of rf bias condition were investigated. A high pretilt angle of about $11^{\circ}$ by the ion beam alignment method was observed on the a-C:H thin film (polymer-like carbon) deposited at 1W rf bias condition, and the low pretilt angle of the NLC was observed on the a-C:H thin film(diamond-like carbon) deposited at rf 30W and 60W bias condition. Consequently, the high NLC pretilt angle and the good aligning capabilities of LC alignment by the IB alignment method on the a-C:H thin film deposited at 1W rf bisa condition can be achieved.

  • PDF

Galvanic Corrosion between Carbon Steel 1018 and Alloy 600 in Crevice with Boric Acid Solution

  • Kim, Dong Jin;Macdonald, Digby D.;Kim, Hong Pyo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.75-80
    • /
    • 2005
  • This work dealt with the evaluation of galvanic corrosion rate in a corrosion cell having annular gap of 0.5 mm between carbon steel 1018 and alloy 600 as a function of temperature and boron concentration. Temperature and boron concentration were ranged from 110 to 300 $^{\circ}C$ and 2000~10000 ppm, respectively. After the operating temperature of the corrosion cell where the electrolyte was injected was attained at setting temperature, galvanic coupling was made and at the same time galvanic current was measured. The galvanic corrosion rate decreased with time, which was described by corrosion product such as protective film as well as boric acid deposit formed on the carbon steel with time. From the galvanic current obtained as a function of temperature and boron concentration, it was found that the galvanic corrosion rate decreased with temperaturewhilethe corrosionrate increasedwith boronconcentration. The experimental resultsobtained from galvanic corrosion measurement were explained by adhesive property of corrosion product such as protective film, boric acid deposit formed on the carbon steel wall and dehydration of boric acid to be slightlysolubleboric acid phase.Moreoverthe galvaniccorrosionrate calculatedusing initialgalvaniccoupling current instead of steady state coupling current was remarked, which could give us relatively closer galvanic corrosion rate to real pressurized water reactor.

Improved Surface Morphologies of Printed Carbon Nanotubes by Heat Treatment and Their Field Emission Properties

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Lee, Yun-Hi;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.22-25
    • /
    • 2006
  • This paper presents heating process for obtaining standing carbon nanotube emitters to improve field-emission properties from the screen-printed multiwalled carbon nanotube (MWCNT) films. In an atmosphere with optimum combination of nitrogen and air for heat treatment of CNT films, the CNT emitters can be made to protrude from the surface. This allows for high emission current and the formation of very uniform emission sites without special surface treatment. The morphological change of the CNT film by this technique has eliminated additional processing steps, such as surface treatment which may result in secondary contamination and damage to the film. Despite its simplicity the process provides high reproducibility in emission current density which makes the films suitable for practical applications.