• Title/Summary/Keyword: Carbon film

Search Result 1,327, Processing Time 0.027 seconds

Large-area Uniform Deposition of Amorphous Hydrogenated Carbon Films using a Plasma CVD Method (플라즈마 CVD 법을 이용한 대면적 균일한 비정질 탄소 막 증착)

  • Yun, Sang-Min;Yang, Sung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.411-414
    • /
    • 2009
  • It has been investigated for the film uniformity and deposition rate of a-C:H films on glass substrate and polymeric materials in the presence of the modulated crossed magnetic field. We used Plasma CVD, i.e, using a crossed electromagnetic field, for uniform depositing thin film. The optimum discharge condition has been discussed for the gas pressure, the magnetic flux density and the distance between substrate and electrodes, As a result, it is found that the optimum discharge conditions are $CH_4$ concentration $CH_4$=10 %, modulated magnetic flux density B=48 Gauss, pressure P=100 mTorr, discharge power supply voltage V=l kV under these experimental conditions. By using these experimental condition, it is possible to prepare the most uniform film extends over about 160 mm of the film width. In this study, we deposited a-C:H thin film on glass substrate, and have a plan that using this condition, study depositing a-C:H thin film on polymeric substrate in next studies.

Electrical characteristics of carbon nitride capacitor for micro-humidity sensors (마이크로 습도센서를 위한 질화탄소막 캐패시터의 전기적 특성)

  • Kim, Sung-Yeop;Lee, Ji-Gong;Chang, Choong-Won;Lee, Sung-Pil
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2007
  • Crystallized carbon nitride film that has many stable physical and/or chemical properties has been expected potentially by a new electrical material. However, one of the most significant problems degrading the quality of carbon nitride films is an existence of N-H and C-H bonds from the deposition environment. The possibility of these reactions with hydroxyl group in carbon nitride films, caused by a hydrogen attack, was suggested and proved in our previous reports that this undesired effect could be applied for fabricating micro-humidity sensors. In this study, MIS capacitor and MIM capacitor with $5{\mu}m{\times}5{\mu}m$ meshes were fabricated. As an insulator, carbon nitride film was deposited on a $Si_{3}N_{4}/SiO_{2}/Si$ substrate using reactive magnetron sputtering system, and its dielectric constant, C-V characteristics and humidity sensing properties were investigated. The fabricated humidity sensors showed a linearity in the humidity range of 0 %RH to 80 %RH. These results reveal that MIS and MIM $CN_{X}$ capacitive humidity sensors can be used for Si based micro-humidity sensors.

Synthesis and Properties of Polyimide Composites Containing Graphene Oxide Via In-Situ Polymerization

  • Zhu, Jiadeng;Lee, Cheol-Ho;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.230-235
    • /
    • 2012
  • In this study, reduced graphene oxide/polyimide (r-GO/PI) composite films, which showed significant enhancement in their electrical conductivity, were successfully fabricated. GO was prepared from graphite using a modified Hummers method. The GO was used as a nanofiller material for the preparation of r-GO/PI composites by in-situ polymerization. An addition of 20 wt% of GO led to a significant decrease in the volume resistivity of composite films by less than nine orders of magnitude compared to that of pure PI films due to the electrical percolation networks of reduced GO created during imidization within the films. A tensile test indicated that the Young's modulus of the r-GO/PI composite film containing 20 wt% GO increased drastically from 2.3 GPa to 4.4 GPa, which was an improvement of approximately 84% compared to that of pure PI film. In addition, the corresponding tensile strength was found to have decreased only by 12%, from 113 MPa to 99 MPa.

Synthesis of Few-layer Graphene Film on a Ni Substrate by Using Filtered Vacuum Arc Source Method

  • Kim, Chang-Su;Seo, Ji-Hun;Gang, Jae-Uk;Kim, Do-Geun;Kim, Jong-Guk;Lee, Hyeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.157-157
    • /
    • 2011
  • Graphene has generated significant interest in the recent years as a functional material for electronics, sensing, and energy applications due to its unique electrical, optical, and mechanical properties. Much of the considerable interest in graphene stems from results obtained for samples mechanically exfoliated from graphite. Practical applications, however, require reliable and well-controlled methods for fabrication of large area graphene films. Recently high quality graphene layers were fabricated using chemical vapor deposition (CVD) on nickel and copper with methane as the source of the carbon atoms. Here, we report a simple and efficient method to synthesize graphene layers using solid carbon source. Few-layer graphene films are grown using filtered vacuum arc source (FVAS) technique by evaporation of carbon atom on Ni catalytic metal and subsequent annealing of the samples at 800$^{\circ}$C. In our system, carbon atoms diffuse into the Ni metal layer at elevated temperatures followed by their segregation as graphene on the free surface during the cooling down step as the solubility of carbon in the metal decrease. For a given annealing condition and cooling rate, the number of graphene layers is easily controlled by changing the thickness of the initially evaporated amorphous carbon film. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as CVD and chemical methods.

  • PDF

Optical and Mechanical Properties of Diamond-like Carbon Film with Variation of Carbon Ratio (탄소비율에 따른 Diamond-like Carbon Film의 광학적 및 기계적 특성)

  • Yun, Deok-Yong;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.808-811
    • /
    • 2008
  • Optical and mechanical properties of diamond-like carbon (DLC) films synthesized by RF plasma enhanced chemical vapor deposition were investigated as a function the C/H ratio in gas mixture. The C/H ratio was varied from 6 to 10 %, adjusting the amount of $CH_4$ and $H_2$ as the source gas. The optical and mechanical properties of DLC films were characterized by UV spectrometer, Ellipsometer and Nano-indenter. The change of the C/H ratio during synthesis of DLC films had many effects on the growth rate, transmittance, refractive index and hardness. The growth rate of the films increased exponentially with the increase in C/H ratio. The hardness of the films showed the tendency to improve with increasing C/H ratio, whereas the transmittance decreased. The refractive index was varied from 2.03 to 2.17, and these refractive indexes close to 2.0 indicates that it can be applied to Si-based solar cell.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryu, Seong-Guk;Kim, Gyeong-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.930-937
    • /
    • 2001
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

The effect of mechanical properties of carbon-based thin film on plasma nitrided injection mold steel (플라즈마 질화처리한 사출금형소재의 비정질 탄소계 박막 증착에 따른 기계적 특성 향상 효과)

  • Hye-Min Kim;Dae-Wook Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.5
    • /
    • pp.328-334
    • /
    • 2023
  • The carbon-based films have various properties, which have been widely applied in industrial application. However, it has critical drawback for poor adhesion between films and metal substrate. In the present work, we have deposited carbon-based films on injection mold steel by plasma assisted chemical vapor deposition (PACVD). In order to improve adhesion, prior to film deposition, the substrate was nitriding-treated using PACVD. And its effect on the adhesion was investigated. Due to the pre-nitriding, the amorphous carbon nitride (a-CN:H) films presented 10 times higher adhesion (34.9 N) than that of un-nitirided. In addition, a friction coefficient was decreased from 0.29 to 0.15 for the amorphous carbon (a-C:H) due to improved adhesion. The obtained results demonstrated that pre-nitriding considerably improved the adhesion, and the relationship among adhesion, hardness, and surface roughness was discussed in detail.

Improving the Long-term Field Emission Stability of Carbon Nanotubes by Coating Co and Ni Oxide Layers

  • Choe, Ju-Seong;Lee, Han-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • Some applications of carbon nanotubes (CNTs) as field emitters, such as x-ray tubes and microwave amplifiers, require high current emission from a small emitter area. To emit the high current density, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects including high crystallinity, aspect ratio, distribution density, height uniformity, adhesion on a substrate, low outgassing rate during electron emission in vacuum, etc. In particular, adhesion of emitters on the substrate is one of the most important parameters to be secured for high current field emission from CNTs. So, we attempted a novel approach to improve the adhesion of CNT emitters by incorporating metal oxide layers between CNT emitters. In our previous study, CNT emitters were fabricated on a metal mesh by filtrating the aqueous suspensions containing both highly crystalline thin multiwalled CNTs and thick entangled multiwalled CNTs. However, the adhesion of CNT film was not enough to produce a high emission current for an extended period of time even after adopting the metal mesh as a fixing substrate of the CNT film. While a high current was emitted, some part of the film was shown to delaminate. In order to strengthen the CNT networks, cobalt-nickel oxides were incorporated into the film. After coating the oxide layer, the CNT tips seemed to be more strongly adhered on the CNT bush. Without the oxide layer, the field emission voltage-current curve moved fast to a high voltage side as increasing the number of voltage sweeps. With the cobalt-nickel oxide incorporated, however, the curve does not move after the second voltage sweep. Such improvement of emission properties seemed to be attributed to stronger adhesion of the CNT film which was imparted by the cobalt-nickel oxide layer between CNT networks. Observed after field emission for an extended period of time, the CNT film with the oxide layer showed less damage on the surface caused by high current emission.

  • PDF

The Analysis of NOx Gas Detection Characteristics for the Gas Sensor Using the MWCNT/ZnO Composites Film (MWCNT/ZnO 복합체 필름을 이용한 가스센서의 NOx가스 검출 특성 분석)

  • Kim, Hyun-Soo;Lee, Won-Jae;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.312-316
    • /
    • 2016
  • In this study, we fabricated $NO_x$ gas sensor by using multi-walled carbon nanotubes(MWCNT)/zinc oxide(ZnO) composite film. Carbon nanotubes (CNTs) have good electronic, chemical-stability, and sensitivity characteristics. And zinc oxide (ZnO) is a wide band gap and large exciton binding energy semiconductor. In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_x$ gas for different values of the $NO_x$ gas concentrations. The gas sensor that absorbed$NO_x$ gas molecules showed a increasing in resistance. The sensitivity of the gas sensor was increased by increasing the gas concentrations. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained the sensitivity. And the comparison analysis to ZnO film gas sensor for detecting $NO_x$ gas. From the experiment result, we confirmed improvement of $NO_x$ gas detection characteristics using the MWCNT/ZnO composite film.

Studies on Formation of Passivation Film on KMFC Anode with Initial Charge Temperature (탄소 부극에서 초기 충전온도별 부동태 피막 형성에 대한 연구)

  • Park, Dong-Won;Kim, Woo-Seong;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.507-512
    • /
    • 2005
  • When carbon electrode is used as an anode in Li ion battery, passivation film forms on the electrode surface during the initial charge process due to so called Solid-Electrolyte Interphase (SEI). The passivation film formed by solvent decomposition during the initial charge process affects charge/discharge capacity. In this paper, 1 M $LiPF_6,EC:DEC$ (1 : 1, volume ratio) electrolyte with $Li_2CO_3$, at various temperatures, the electrochemical characteristics of passivation film formed on Kawasaki Mesophase Fine Carbon electrode surface were investigated by using chronopotentiometry, cyclic voltammetry, and impedance spectroscopy. Experimental observations indicated that as solvent decomposition occurred, the decomposition voltage was strongly dependent on ionic conductivity, which was low in the process at low temperature. The impedance of passivation film formed during the initial charge process, were dependent on the temperature.