• Title/Summary/Keyword: Carbon decrement

Search Result 21, Processing Time 0.027 seconds

Landuse and Landcover Change and the Impacts on Soil Carbon Storage on the Bagmati Basin of Nepal

  • Bastola, Shiksha;Lim, Kyuong Jae;Yang, Jae Eui;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.33-39
    • /
    • 2019
  • The upsurge of population, internal migration, economic activities and developmental works has brought significant land use and land cover (LULC) change over the period of 1990 and 2010 in the Bagmati basin of Nepal. Along with alteration on various other ecosystem services like water yield, water quality, soil loss etc. carbon sequestration is also altered. This study thus primary deals with evaluation of LULC change and its impact on the soil carbon storage for the period 1990 to 2010. For the evaluation, InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Carbon model is used. Residential and several other infrastructural development activities were prevalent on the study period and as a result in 2010 major soil carbon reserve like forest area is decreased by 7.17% of its original coverage in 1990. This decrement has brought about a subsequent decrement of 1.39 million tons of carbon in the basin. Conversion from barren land, water bodies and built up areas to higher carbon reserve like forest and agriculture land has slightly increased soil carbon storage but still, net reduction is higher. Thus, the spatial output of the model in the form of maps is expected to help in decision making for future land use planning and for restoration policies.

Estimation of Potential Supply of Offset from Household Electric Appliances (가정용 전자기기의 잠재 상쇄 공급량 추정)

  • Jin, Hyun Joung;Kim, Jeong In;You, Eun Young;Park, Seo Hwa
    • Environmental and Resource Economics Review
    • /
    • v.24 no.3
    • /
    • pp.463-488
    • /
    • 2015
  • A more detailed design of offset system is needed according to the emission trading system started in 2015. This study aims to estimate the supply of potential offset that can be secured by expanding high-efficiency household electric appliances. The target commodities for analysis are three different householding electric appliances: TV, washing machine, electric fan, refrigerator and air conditioner. By using the ARDL model, we estimated the coefficients of diffusion of these high-efficiency appliances from 2016 to 2022. Then, the potential supply of offset was drawn by calculating the amount of electricity saving by efficiency improvement and by applying the rates of carbon exchange. Supposing that the electricity savings rates of high-efficiency appliances are each 10% and 20%, the accumulated carbon decrement in 2022 was respectively $361,899CO_2t$ and $723,797CO_2t$. The appliance that showed the biggest carbon decrement was air conditioner, and the second biggest was refrigerator and the next was TV, followed by washing machine, electric fan.

Effect of Tempering Treatment on Mechanical Properties of Ausformed Martensite in Fe-30% Ni-0.35%C Alloy (Fe-30%Ni-0.35%C 합금에서 Ausformed Martensite의 기계적 성질에 미치는 Tempering처리의 영향)

  • Lee, E.K.;Lee, K.B.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.44-52
    • /
    • 1994
  • In order to investigate the effect of tempring treatment on the mechanical properties of ausformed martensite in Fe-30%Ni-0.35%C alloy, the hardness, yield strength and elongation were examined by tensile test. 1. The strength of deformed austenite in Fe-30%Ni-0.35%C alloy was increased due to the work hardening induced from the dislocation density increased during deformation. The strength of ausformed martensite was increased because of defects inherited from deformed austenite by martensitic transformation. 2. The ductility of ausformed martensite was shown a nearly constant values independent of deformation degrees because of the interaction of multiple factors such as increased retained austenite, formation of void and decrement of twin in ausformed martensite. 3. The strength of ausformed martensite by tempering treatment was shown a little decrement up to $340^{\circ}C$, especially showed remarkable softening resistance in higher deformation degrees. 4. Virgin martensite and ausformed martensite were shown a maximum yield strength by clustering in tempering at $100^{\circ}C$ and above $100^{\circ}C$, yield strength was very small decreased due to the decrement of solute carbon by the destruction of clustering. 5. The decomposition of retained austenite was not shown up to $450^{\circ}C$ in ausformed martensite with tempering treatment, and the matrix was rapidly softening because of the decomposition of martensite and the formation of reversed austenite with tempering above $400^{\circ}C$.

  • PDF

Characterization of the UV Oxidation of Raw Natural Rubber Thin Film Using Image and FT-IR Analysis

  • Kim, Ik-Sik;Lee, Bok-Won;Sohn, Kyung-Suk;Yoon, Joohoe;Lee, Jung-Hun
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Characterization of the UV oxidation for raw natural rubber (NR) was investigated in controlled conditions through image and FT-IR analysis. The UV oxidation was performed on a thin film of natural rubber coated on a KBr window at 254 nm and room temperature to exclude the thermal oxidation. Before or after exposure to UV light, image of the NR thin film was observed at a right or tilted angle. FT-IR absorption spectra were measured in transmission mode with the UV irradiation time. The UV oxidation of NR was examined by the changes of absorption peaks at 3425, 1717, 1084, 1477, 1377, and $833cm^{-1}$ which were assigned to hydroxyl group (-OH), carbonyl group (-C=O), carbon-oxygen bond (-C-O), methylene group $(-CH_2-)$, methyl group $(-CH_3)$, and cis-methine group $(cis-CCH_3=CH-)$, respectively. During the initial exposure period, the results indicated that the appearance of carbonyl group was directly related to the reduction of cis-methine group containing carbon-carbon double bond (-C=C-). Most of aldehydes or ketones from carbon-carbon double bonds were formed very fast by chain scission. A lot of long wide cracks with one orientation at regular intervals which resulted in consecutive chain scission were observed by image analysis. During all exposure periods, on the other hand, it was considered that the continuous increment of hydroxyl and carbonyl group was closely related to the decrement of methylene and methyl group in the allylic position. Therefore, two possible mechanisms for the UV oxidation of NR were suggested.

Prediction of the Mechanical Erosion Rate Decrement for Carbon-Composite Nozzle by using the Nano-Size Additive Aluminum Particle (나노 알루미늄 입자 첨가 추진제에 의한 탄소복합재 노즐의 기계적 삭마 감소 특성 예측)

  • Tarey, Prashant;Kim, Jaiho;Levitas, Valeny I.;Ha, Dongsung;Park, Jae Hyun;Yang, Heesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.42-53
    • /
    • 2015
  • In this study, the influence of Al particle size, as an additive for solid propellant, on the mechanical erosion of the carbon-composite nozzle was evaluated. A new model which can predict the size and distribution of the agglomerated reaction product($Al(l)/Al_2O_3(l)$) was established, and the size of agglomerate were calculated according to the various initial size of Al in the solid propellant. With predicted results of the model, subsequently, the characteristics of mechanical erosion on the carbon-composite nozzle was estimated using a commercial CFD software, STAR CCM+. The result shows that the smaller the initial Al particles are, in the solid propellant, the lower is the mechanical erosion rate of the composite nozzle wall, especially for the nano-size Al particle.

Diffusion-Selectivity Analysis of Permanent Gases through Carbon Molecular Sieve Membranes

  • Kang, Jong-Seok;Park, Ho-Bum;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • The selectivity of a gas in the carbon molecular sieve membrane (CMSM) can be expressed as the ratio of the product of the diffusivity and the solubility of two different gases. The diffusivity is also expressed as the product of the entropy and the total energy (kinetic and potential energy) in the nano-sized pore of the membrane. The present study calculates the entropic-energy and selectivity of penetrant gases such as H$_2$, O$_2$, N$_2$, and CO$_2$ from the gas-in-a box theory to physically analyze the diffusivity of penetrant gas in slit-shaped pore of CMSM focusing on the restriction of gas motion based on the size difference between penetrant gas pairs. The contribution of each energy term is converted to entropic term separately. By the conjugated calculation for each entropic-energy, the entropic effects on diffusivity-selectivity for gas pairs such as H$_2$/N$_2$, CO$_2$/N$_2$, and O$_2$/N$_2$ were analyzed within active pore of CMSM. In the activated diffusion domain, the calculated value of entropic-selectivity lies between 9.25 and 111.6 for H$_2$/N$_2$, between 3.36 and 6.0 for CO$_2$/N$_2$, and between 1.25 and 16.94 for O$_2$/N$_2$, respectively. The size decrement of active pore in CMSM had the direct effect on the reduction of translational entropic-energy and the contribution of vibrational entropic-energy for N$_2$, O$_2$, and H$_2$ was almost negligible. However, the vibrational entropic term of CO$_2$ might extravagantly affect on the entropic-selectivity.

Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water (오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화)

  • Lee, Jinjoo;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.341-345
    • /
    • 2020
  • An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.

Therapeutic Effect of Lycii fructus Extract in Hepatotoxicity Induced by Carbon Tetrachloride (사염화탄소로 유발된 간손상에 대한 구기자 추출물의 치료효과)

  • Cho, Jung Hee;Sin, Ji Soon;Lee, Kwang Joo;Kim, Yun Bae;Kang, Jong Koo;Hwang, Seock Yeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.1
    • /
    • pp.55-63
    • /
    • 2004
  • The hepatotherapeutic effect of the extract of Lycii fructus has been studied in rats against $CCl_4$ induced liver toxicity. The rats were orally treated with $CCl_4$ (corn oil/$CCl_4$ 1:1, $1m{\ell}/kg$) and then $CCl_4$ ($0.5m{\ell}/kg$) administered four times for 2 weeks. The extracts of L. fructus have been administered every day for 2 weeks after the last $CCl_4$ injection. The experimental groups consisted of negative control (G1), positive control ($CCl_4$ alone; G2), extract of L. fructus (50 mg/kg; G3, 100 mg/kg; G4, 200 mg/kg; G5), respectively. There was a significant decrement to G2 on the serum level of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase in G5. Also, the content of thiobarbituric acid reactive substance, and phosphatidylcholine hydroperxidase, a marker of lipid peroxidation, in the liver were decreased significantly G5 and G4 compared with G2. Although, catalase or superoxide dismutase, antioxidant enzyme, in the liver were decreased significantly too, it would not be a good sign for the liver. In histopathological findings, such a hepatocellular vacuolar degeneration, lobular restructure, cellular infiltration, necrosis, and so on were shown severely in G2. However, G4 and G5 was shown a mild cytoplasmic vacuolation and inflammatory cell. In conclusion, as a protection against cell damage, lipid peroxidation and serum level, it suggested that the extract of Lycii fructus would have been a therapeutic effect of liver injury directly.

  • PDF

Effect of Gun Nozzle Movement Speed in HVOF Process on the properties of Coating Thickness and Surface (HVOF 용사 건의 이동속도가 WC-Co 코팅층의 두께 형성 및 표면 특성에 미치는 영향)

  • Kim, Kibeom;Kim, Kapbae;Jung, Jongmin;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.262-269
    • /
    • 2022
  • In order to process materials such as engineering plastics, which are difficult to mold due to their high strength compared to conventional polymer materials, it is necessary to improve the hardness and strength of parts such as screws and barrels of injection equipment in extrusion system. High-velocity oxygen fuel (HVOF) process is well known for its contribution on enhancement of surface properties. Thus in this study, using the HVOF process, WC coating layers of different thicknesses were bonded to the surface of S30C substrate by controlling the movement speed of the spray nozzle and each property was evaluated to decide the optimization condition. Through the results, the thickness of WC coating layer increased from 0 to 200 ㎛ maximum, along with the decrement of nozzle movement speed and the surface hardness get increased. Especially, the coated layer with the thickness over 180 ㎛ under the nozzle speed 500 mm/s had high hardness than thinner layer. In addition, the amount of wear consumed per unit time was also significantly reduced due to the formation of the coating layer.

Damping characteristics of CFRP strengthened castellated beams

  • Cyril Thomas Antony Raj;Jyothis Paul Elanhikuzhy;Baskar Kaliyamoorthy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.685-699
    • /
    • 2023
  • In recent years, Carbon Fibre Reinforced Plastic (CFRP) strengthening is found to be one of the best methods to strengthen steel structures. The fibrous bond can also influence the vibration characteristics of the strengthened element apart from its static strength enhancement property. The main objective of this study is to understand the influence of CFRP strengthening on the dynamic Behaviour of Thin-Webbed Castellated Beams (TWCBs). A detailed experimental investigation was carried out on five sets of beams with varying parameters such as domination of shear (Shear Dominant, Moment Dominant and Moment and Shear Dominant), sectional classification (Plastic and Semi-compact) and perforation geometries (ho/dwratio 0.65 and e/ho ratio 0.3). Free vibration analysis was carried out by exciting the simply supported TWCBs with an impact force generated by a ball dropped from a specific height. Logarithmic decrement method was used to obtain the damping ratio and natural frequencies of vibration were found by Fast Fourier Transform (FFT). Natural frequency showed an increase in a range of 10.5 - 55% for the different sets of castellated beams. An increase of 62.30% was noted in the damping ratio of TWCBs after strengthening which is an indication of improvement in the vibration characteristics of the beam.