DOI QR코드

DOI QR Code

Estimation of Potential Supply of Offset from Household Electric Appliances

가정용 전자기기의 잠재 상쇄 공급량 추정

  • Jin, Hyun Joung (Department of Economics, College of Business and Economics, Chung-Ang University) ;
  • Kim, Jeong In (Department of Economics, College of Business and Economics, Chung-Ang University) ;
  • You, Eun Young (Department of Culture-Art Business Administration, Graduate School of Chung-Ang University) ;
  • Park, Seo Hwa (Department of Culture-Art Business Administration, Graduate School of Chung-Ang University)
  • 진현정 (중앙대학교 경영경제대학 경제학부) ;
  • 김정인 (중앙대학교 경영경제대학 경제학부) ;
  • 유은영 (중앙대학교 문화예술경영학과) ;
  • 박서화 (중앙대학교 문화예술경영학과)
  • Received : 2015.05.28
  • Accepted : 2015.09.08
  • Published : 2015.09.30

Abstract

A more detailed design of offset system is needed according to the emission trading system started in 2015. This study aims to estimate the supply of potential offset that can be secured by expanding high-efficiency household electric appliances. The target commodities for analysis are three different householding electric appliances: TV, washing machine, electric fan, refrigerator and air conditioner. By using the ARDL model, we estimated the coefficients of diffusion of these high-efficiency appliances from 2016 to 2022. Then, the potential supply of offset was drawn by calculating the amount of electricity saving by efficiency improvement and by applying the rates of carbon exchange. Supposing that the electricity savings rates of high-efficiency appliances are each 10% and 20%, the accumulated carbon decrement in 2022 was respectively $361,899CO_2t$ and $723,797CO_2t$. The appliance that showed the biggest carbon decrement was air conditioner, and the second biggest was refrigerator and the next was TV, followed by washing machine, electric fan.

본 연구에서는 2015년부터 시행된 온실가스 배출권 거래제도에 맞추어 상쇄(offset)제도의 구체적인 설계가 필요한 시점에서, 가정부문의 고효율 전자기기의 보급을 통해 확보할 수 있는 잠재 상쇄 공급량을 추정하였다. 분석대상 품목은 TV, 세탁기, 선풍기, 냉장고, 에어컨 등 다섯 가지 가전기기이며, 자기회귀시차분포모형(ARDL)을 통해 2016년부터 2022년까지의 고효율 가전기기의 보급대수를 추정하고, 효율 개선을 통한 전기 절감량과 이에 따른 탄소 환산율을 통해 최종적으로 잠재 상쇄 공급량을 도출하였다. 고효율 가전기기의 에너지 절감률을 각각 10%와 20%로 가정했을 때 2022년에 누적된 탄소 저감량은 $361,899CO_2t$$723,797CO_2t$으로 나타났으며, 에너지 절감량이 큰 순서로는 에어컨, 냉장고, TV, 세탁기, 선풍기 순으로 나타났다. 또한 에너지 소비효율 1등급 가전기기의 에너지 절감률이 20%라고 가정했을 때, 누적 탄소 저감량이 2015년에 비해 2022년에 약 316% 증가하는 것으로 나타났다.

Keywords

References

  1. 마이더스, "온실가스 배출권시장, 아직은 유명무실", 2015. http://www.yonhapmidas.com/issue/bigissue/2015-03/150308161952_547467
  2. 김완중, "인도네시아의 교역조건과 투자 관계", 아시아 연구, 제17권, 제1호, 2014.
  3. 노동운, "지역별 온실가스 감축 잠재량 및 감축비용 분석", 지역개발연구, 제43권, 제1호, 2011.
  4. 민동기, "제조업 전력 사용 효율성 제고를 통한 온실가스($CO_2$) 감축 잠재량 추정에 관한 연구", 환경정책연구, 제9권, 제3호, 2010.
  5. 박종진 ․ 소철호 ․ 김진오, "확산 모형을 이용한 고효율기기의 보급량 예측에 관한 연구", 에너지공학, 제17권, 제1호, 2008.
  6. 백정명 ․ 원종률 ․ 이병하 ․ 김정훈, "가정용 에어컨 효율기준 강화에 따른 $CO_2$산정연구", 조명 ․ 전기설비학회논문지, 제23권, 제1호, 2009.
  7. 서화 ․ 심성훈, "중국의 주택가격과 거시경제변수 관계 분석", 아시아 연구, 제16권, 제 3호, 2013.
  8. 심성훈, "주택가격과 기초경제여건의 장기 관계 : 우리나라의 패널 자료를 이용하여", 국제지역학회, 제16권, 제1호, 2012.
  9. 에너지관리공단 효율관리제도, http://bpms.kemco.or.kr/transport_2012/main/main.aspx,, 2015. 3. 21.
  10. 이종원, 계량경제학, 박영사, 2007.
  11. 임현진 ․ 정수관 ․ 원두환, "지구온난화가 가정부문 에너지 소비량에 미치는 영향 분석: 전력수요를 중심으로", 에너지경제연구, 제12권, 제2호, 2013.
  12. 전력거래소, "2011년 가전기기 보급률 및 가정용전력 소비행태 조사", 2011.
  13. 전력거래소, "2013년 가전기기 보급률 및 가정용전력 소비행태 조사", 2013.
  14. 최문성, "전자상거래가 부가가치세 징수실적에 미치는 효과", e-비즈니스 연구, 제13 권, 제4호, 2012.
  15. 통계청, "2010년 인구주택총조사", 2010.
  16. 진형아 ․ 여소영 ․ 윤소원 ․ 김대곤 ․ 서정현 ․ 홍유덕 ․ 한진석, "녹색생활 실천에 따른 가 정부문의 이산화탄소 감축잠재량 및 경제적 효과 분석", 한국대기환경학회지, 제29권, 제5호, 2013.
  17. Besmann, T. M., "Projections of US GHG reduction from nuclear power new capacity based on historic levels of investment," Energy Policy Vol. 38, No. 5, 2010, pp. 2431-2437. https://doi.org/10.1016/j.enpol.2009.12.036
  18. Cai, W., Can Wang, Ke Eang, Ying Zhang, and Jining Chen, "Scenario analysis on $CO_2$ emissions reduction potential on China's electricity sector," Energy Policy, Vol. 35, No. 4, 2007, pp. 6445-6456. https://doi.org/10.1016/j.enpol.2007.08.026
  19. Kadian, R., R. P. Dahiya, and H. P. Garg, "Energy-related emissions and mitigation opportunities from the household sector in Delhi.," Energy Policy, Vol. 35, No. 12, 2007, pp. 6195-6211. https://doi.org/10.1016/j.enpol.2007.07.014
  20. Menyah, K. and Y. W. Rufael, "$CO_2$ emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Vol. 38, No. 6, 2010, pp. 2911-2915. https://doi.org/10.1016/j.enpol.2010.01.024
  21. Pesaran, M. H. and Y. Shin., "An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis," Oxford, Oxford University Press, 1999.
  22. Pesaran, M. H., Y. Shin and R. J. Smith., "Bounds testing approaches to the analysis of level relationships." Journal of Applied Econometrics Vol. 16, 2001, pp. 289-326. https://doi.org/10.1002/jae.616
  23. Takse, K. and Tatsujiro Suzuki, "The Japanese energy sector : Current situation, and future paths," Energy Policy, Vol. 39, No. 11, 2011, pp. 6731-6744. https://doi.org/10.1016/j.enpol.2010.01.036
  24. Zhanga, L. X., C. B. Wanga, and B. Songb, "Carbon emission reduction potential of a typical household biogas system in rural China," Journal of Cleaner Production, Vol. 47, 2013, pp. 415-421. https://doi.org/10.1016/j.jclepro.2012.06.021