• Title/Summary/Keyword: Carbon composite

Search Result 2,826, Processing Time 0.03 seconds

Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate (긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.171-178
    • /
    • 2019
  • Fiber-reinforced polymer (FRP) composites have proved to be reliable as strengthening materials. Most of existing studies used single types of FRP composites. Therefore, in this experimental study, carbon FRP sheet, aramid FRP sheet, and hybrid FRP plate including glass fibers were fabricated, and the effect of pre-stressed FRP composites on flexural strengthening of reinforced concrete (RC) beams was investigated. In total, eight RC beam specimens were fabricated, including one control beam (specimen N) without FRP composites and seven FRP-strengthened beams. The main parameters were type of FRP composite, the number of anchors used for pre-stressing, and thickness of FRP plates. As a result, the beam strengthened with pre-stressed FRP plate showed superior performance to the non-strengthened one in terms of initial strength, strength and stiffness at yielding, and ultimate strength. As the number of anchors and thickness of FRP plate (i.e., amount of FRP plates) increased, the strengthening effect increased as well. When hybrid FRP plates were pre-stressed, the strengthening effect was higher in comparison with pre-stressed single type FRP plate.

Research Trends of Polybenzimidazole-based Polymer Electrolyte Membranes for High-temperature Polymer Electrolyte Membrane Fuel Cells (고온 구동형 고분자 전해질 막 연료전지용 폴리벤즈이미다졸계 고분자 전해질 막의 개발 동향)

  • HyeonGyeong, Lee;Gabin, Lee;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.442-455
    • /
    • 2022
  • High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has been studied as an alternative to low-temperature PEMFC due to its fast activation of electrodes and high resistance to electrode poisoning by carbon monoxide. It is highly required to develop stable PEMs operating at high temperatures even doped by ion-conducting materials for the development of high-performance and durable HT-PEMFC systems. A number of studies have been conducted to develop polybenzimidazole (PBI)-based PEMs for applications in HT-PEMFC due to their high interaction with doped ion-conducting materials and outstanding thermomechanical stability under high-temperature operation. This review focused on the development of PBI-based PEMs showing high performance and durability. Firstly, the characteristic behavior of PBI-based PEMs doped with various ion-conducting materials including phosphoric acid was systematically investigated. And then, a comparison of the physicochemical properties of the PEMs according to the different membrane manufacturing processes was conducted. Secondly, the incorporation of porous polytetrafluoroethylene substrate and/or inorganic composites to PBI matrix to improve the membrane performances was studied. Finally, the construction of cross-linked structures into PBI-based PEM systems by polymer blending method was introduced to improve the PEM properties.

Synthesis of porous-structured (Ni,Co)Se2-CNT microsphere and its electrochemical properties as anode for sodium-ion batteries (다공성 구조를 갖는 (Ni,Co)Se2-CNT microsphere의 합성과 소듐 이차전지 음극활물질로서의 전기화학적 특성 연구)

  • Yeong Beom Kim;Gi Dae Park
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.178-184
    • /
    • 2023
  • Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.

A Strategy of a Gap Block Design in the CFRP Double Roller to Minimize Defects during the Product Conveyance (제품 이송 시 결함 최소화를 위한 CFRP 이중 롤러의 Gap block 설계 전략)

  • Seung-Ji Yang;Young-june Park;Sung-Eun Kim;Jun-Geol Ahn;Hyun-Ik Yang
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • Due to the structural characteristic of a double roller, the double roller can have various deformation behaviors depending on a gap block design, even if dimensions and loading conditions for the double roller are the same. Based on this feature, we propose a strategy for designing the gap block of the carbon-fiber reinforced plastic (CFRP) double roller to minimize defects (e.g., sagging and wrinkling), which can be raised during the product conveying process, with the pursue of the lightweight design. In the suggested strategy, analysis cases are first selected by considering main design parameters and engineering tolerances of the gap block, and then deformation behaviors of these selected cases are extracted using the finite element method (FEM). Here, to obtain the optimal gap block parameters that satisfy the purpose of this study, deformation deviations in the contact area are calculated and compared using the extracted deformation behaviors. Note that the contact area in this work is located between the product and the roller. As a result, through the design method of the gap block proposed in this work, it is possible to construct the CFRP double roller that can significantly decrease the defects without changing the overall sizes of the roller. A detailed method is suggested herein, and the results are evaluated in a numerical way.

New Method for Combined Quantitative Assessment of Air-Trapping and Emphysema on Chest Computed Tomography in Chronic Obstructive Pulmonary Disease: Comparison with Parametric Response Mapping

  • Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Namkug Kim;Jaeyoun Yi;Jae Seung Lee;Sei Won Lee;Yeon-Mok Oh;Sang-Do Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1719-1729
    • /
    • 2021
  • Objective: Emphysema and small-airway disease are the two major components of chronic obstructive pulmonary disease (COPD). We propose a novel method of quantitative computed tomography (CT) emphysema air-trapping composite (EAtC) mapping to assess each COPD component. We analyzed the potential use of this method for assessing lung function in patients with COPD. Materials and Methods: A total of 584 patients with COPD underwent inspiration and expiration CTs. Using pairwise analysis of inspiration and expiration CTs with non-rigid registration, EAtC mapping classified lung parenchyma into three areas: Normal, functional air trapping (fAT), and emphysema (Emph). We defined fAT as the area with a density change of less than 60 Hounsfield units (HU) between inspiration and expiration CTs among areas with a density less than -856 HU on inspiration CT. The volume fraction of each area was compared with clinical parameters and pulmonary function tests (PFTs). The results were compared with those of parametric response mapping (PRM) analysis. Results: The relative volumes of the EAtC classes differed according to the Global Initiative for Chronic Obstructive Lung Disease stages (p < 0.001). Each class showed moderate correlations with forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC) (r = -0.659-0.674, p < 0.001). Both fAT and Emph were significant predictors of FEV1 and FEV1/FVC (R2 = 0.352 and 0.488, respectively; p < 0.001). fAT was a significant predictor of mean forced expiratory flow between 25% and 75% and residual volume/total vital capacity (R2 = 0.264 and 0.233, respectively; p < 0.001), while Emph and age were significant predictors of carbon monoxide diffusing capacity (R2 = 0.303; p < 0.001). fAT showed better correlations with PFTs than with small-airway disease on PRM. Conclusion: The proposed quantitative CT EAtC mapping provides comprehensive lung functional information on each disease component of COPD, which may serve as an imaging biomarker of lung function.

Performance Analysis of CFRP Rear Spoiler according to Types of Inner Foam Core under High-speed Driving Condition (고속 주행 상황에서 CFRP 리어 스포일러의 내부 폼 코어 종류에 따른 성능 분석)

  • Sung-Eun Kim;Jun-Geol Ahn;Moon-Sung Kim;Seung-Ji Yang;Ki-Young Kim;Hyun-Ik Yang
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.86-93
    • /
    • 2024
  • The inner foam structure plays an important role in the performance of the carbon-fiber-reinforced plastic (CFRP) rear spoiler used in automobiles. However, there is still a lack of studies for the CFRP-based rear spoiler according to the type of inner foam, especially under the high-speed driving condition. With this motivation, we numerically analyze the performance of the CFRP rear spoiler using various cases of the inner foam under the highspeed driving condition. Here, polymethacrylimide (PMI), polyvinyl chloride (PVC), and styrene acrylonitrile (SAN) resins are employed as the inner foams in this work. The performances are evaluated using the deformation aspects and vibration characteristics when the driving condition is a high-speed condition (200 km/h). Furthermore, to specifically verify the importance of the inner foam in the high-speed condition, we additionally investigate the performance of the CFRP rear spoiler without the inner foam structure (i.e., hollow type). As a result, it is confirmed that among the types of inner foams utilized in this work, the PMI and PVC inner foams have the best deformation aspect and vibration characteristic, respectively. Note that the hollow-type inner foam has inferior performances compared to other inner foams invoked in this study. Consequently, through this study, it can be confirmed that the inner foam structure can significantly improve the performance of the CFRP spoiler under high-speed driving condition (200 km/h), and also that the strengths of the CFRP spoiler can manifest differently depending on the types of inner foam core.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

Statistical Optimization of Culture Conditions of Probiotic Lactobacillus brevis SBB07 for Enhanced Cell Growth (프로바이오틱 Lactobacillus brevis SBB07의 균체량 증가를 위한 배양 조건 최적화)

  • Jeong, Su-Ji;Yang, Hee-Jong;Ryu, Myeong Seon;Seo, Ji Won;Jeong, Seong-Yeop;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.577-586
    • /
    • 2018
  • We recently reported the potential probiotic properties of Lactobacillus brevis SBB07 isolated from blueberries. The present study investigates the effect of culture conditions such as temperature, initial pH, culture time, and medium constituent for industrial application. The ingredients of the medium to improve cell growth were selected by Plackett-Burman design (PBD) and central composite design (CCD) within a desirable range. The PBD was applied with 19 factors: seven carbon sources, six nitrogen sources, and six microelements. Protease peptone, corn steep powder (CSP), and yeast extract were found to be significant factors for the growth of SBB07. The CCD was then applied with three variables found from the PBD at five levels, and the optimum values were decided for the three variables: protease peptone, CSP, and yeast extract. In the case of the growth of SBB07, the proposed optimal media contained 2.0% protease peptone, 2.5% CSP, and 2.0% yeast extract, and the maximum dried-cell weight was predicted to be 2.93963 g/l. By the model verification, it was confirmed that the predicted and actual results are similar. Finally, the study investigated the effects of incubation temperature and initial pH at the optimized medium. It was confirmed that the dried-cell weight increased from $2.2933{\pm}0.0601g/l$ to $3.85{\pm}0.0265g/l$ when compared to the basal medium at $37^{\circ}C$ and initial pH 8.0. Establishing the optimal culture condition for SBB07 provides good potential for applications in probiotics and can serve as the foundation for the industrialization of materials.

Optimization for Extraction of ${\beta}-Carotene$ from Carrot by Supercritical Carbon Dioxide (초임계 유체에 의한 당근의 ${\beta}-Carotene$ 추출의 최적화)

  • Kim, Young-Hoh;Chang, Kyu-Seob;Park, Young-Deuk
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.411-416
    • /
    • 1996
  • Supercritical fluid extraction of ${\beta}$-carotene from carrot was optimized to maximize ${\beta}$-carotene (Y) extraction yield. A central composite design involving extraction pressure ($X_1$ 200-,100 bar), temperature ($X_2,\;35-51^{\circ}C$) and time ($X_1$$ 60-200min) was used. Three independent factors ($X_1,\;X_2,\;X_3$) were chosen to determine their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation,$Y={\beta}_0+{\beta}_1X_1+{\beta}_2X_2+{\beta}_3X_3+{\beta}_11X_12+{\beta}_22X_3^2+{\beta}_-12X_1X_2+{\beta}_12X_1X_2+{\beta}_13X_1X_3+{\beta}_23X_2X_3,$ which measures the linear, quadratic and interaction effects. Extraction yields of ${\beta}$-carotene were affected by pressure, time and temperature in the decreasing order, and linear effect of tenter point (${\beta}_11$) and pressure (${\beta}_1$) were significant at a level of 0.001(${\alpha}$). Based on the analysis of variance, the model fitted for ${\beta}_11$-carotene (Y) was significant at 5% confidence level and the coefficient of determination was 0.938. According to the response surface of ${\beta}$-carotene by cannoical analysis, the stationary point for quantitatively dependent variable (Y) was found to be the maximum point for extraction yield. Response area for ${\beta}$-carotene (Y) in terms of interesting region was estimated over $10,611{\mu}g$ Per 100 g raw carrot under extraction.

  • PDF

Optimization of Medium Components using Response Surface Methodology for Cost-effective Mannitol Production by Leuconostoc mesenteroides SRCM201425 (반응표면분석법을 이용한 Leuconostoc mesenteroides SRCM201425의 만니톨 생산배지 최적화)

  • Ha, Gwangsu;Shin, Su-Jin;Jeong, Seong-Yeop;Yang, HoYeon;Im, Sua;Heo, JuHee;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.861-870
    • /
    • 2019
  • This study was undertaken to establish optimum medium compositions for cost-effective mannitol production by Leuconostoc mesenteroides SRCM201425 isolated from kimchi. L. mesenteroides SRCM21425 from kimchi was selected for efficient mannitol production based on fructose analysis and identified by its 16S rRNA gene sequence, as well as by carbohydrate fermentation pattern analysis. To enhance mannitol production by L. mesenteroides SRCM201425, the effects of carbon, nitrogen, and mineral sources on mannitol production were first determined using Plackett-Burman design (PBD). The effects of 11 variables on mannitol production were investigated of which three variables, fructose, sucrose, and peptone, were selected. In the second step, each concentration of fructose, sucrose, and peptone was optimized using a central composite design (CCD) and response surface analysis. The predicted concentrations of fructose, sucrose, and peptone were 38.68 g/l, 30 g/l, and 39.67 g/l, respectively. The mathematical response model was reliable, with a coefficient of determination of $R^2=0.9185$. Mannitol production increased 20-fold as compared with the MRS medium, corresponding to a mannitol yield 97.46% when compared to MRS supplemented with 100 g/l of fructose in flask system. Furthermore, the production in the optimized medium was cost-effective. The findings of this study can be expected to be useful in biological production for catalytic hydrogenation causing byproduct and additional production costs.