Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.8.861

Optimization of Medium Components using Response Surface Methodology for Cost-effective Mannitol Production by Leuconostoc mesenteroides SRCM201425  

Ha, Gwangsu (Microbial Institute for Fermentation Industry (MIFI))
Shin, Su-Jin (Korean culture center of microorganisms (KCCM))
Jeong, Seong-Yeop (Microbial Institute for Fermentation Industry (MIFI))
Yang, HoYeon (Microbial Institute for Fermentation Industry (MIFI))
Im, Sua (Microbial Institute for Fermentation Industry (MIFI))
Heo, JuHee (Microbial Institute for Fermentation Industry (MIFI))
Yang, Hee-Jong (Microbial Institute for Fermentation Industry (MIFI))
Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI))
Publication Information
Journal of Life Science / v.29, no.8, 2019 , pp. 861-870 More about this Journal
Abstract
This study was undertaken to establish optimum medium compositions for cost-effective mannitol production by Leuconostoc mesenteroides SRCM201425 isolated from kimchi. L. mesenteroides SRCM21425 from kimchi was selected for efficient mannitol production based on fructose analysis and identified by its 16S rRNA gene sequence, as well as by carbohydrate fermentation pattern analysis. To enhance mannitol production by L. mesenteroides SRCM201425, the effects of carbon, nitrogen, and mineral sources on mannitol production were first determined using Plackett-Burman design (PBD). The effects of 11 variables on mannitol production were investigated of which three variables, fructose, sucrose, and peptone, were selected. In the second step, each concentration of fructose, sucrose, and peptone was optimized using a central composite design (CCD) and response surface analysis. The predicted concentrations of fructose, sucrose, and peptone were 38.68 g/l, 30 g/l, and 39.67 g/l, respectively. The mathematical response model was reliable, with a coefficient of determination of $R^2=0.9185$. Mannitol production increased 20-fold as compared with the MRS medium, corresponding to a mannitol yield 97.46% when compared to MRS supplemented with 100 g/l of fructose in flask system. Furthermore, the production in the optimized medium was cost-effective. The findings of this study can be expected to be useful in biological production for catalytic hydrogenation causing byproduct and additional production costs.
Keywords
Industrial application; Leuconostoc mesenteroides; mannitol; medium optimization; response surface methodology;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Andreevskaya, M., Johansson, P., Jaaskelainen, E., Ramo, T., Ritari, J., Paulin, L., Bjorkroth, J. and Auvinen, P. 2016. Lactobacillus oligofermentans glucose, ribose and xylose transciptomes show higher similarity between glucose and xylose catabolism-induced responses in the early exponential growth phase. BMC Genomics 17, 539.   DOI
2 Bong, K. M., Kim, K. M., Seo, M. K., Han, J. H., Park, I. C., Lee, C. W. and Kim, P. I. 2017. Optimization of medium for the carotenoid production by Rhodobacter sphaeroides PS-24 using response surface methodology. Kor. J. Org. Agric. 25, 135-148.   DOI
3 Ghoreishi, S. M. and Gholami, R. 2009. Innovative strategies for engineering mannitol production. Trends Food Sci. Technol. 20, 263-270.   DOI
4 Grobben, G. J., Peters, S. W. P., Wisselink, H., Weusthuis, R. A., Hoefnagel, M. H. N., Hugenholtz, J. and Eggink, G. 2001. Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl. Environ. Microbiol. 67, 2867-2870.   DOI
5 Ha, G. S., Yang, H. J., Jeong, S. J., Ryu, M. S., Kim, J. W., Yang, H. Y., Shin, S. J., Im, S. A., Seo, J. W., Jeong, S. Y. and Jeong, D. Y. 2018. Medium optimization for enhanced growth of Bacillus subtilis SRCM102046 possessing antibacterial activity using response-surface methodology. Kor. J. Food Preserv. 25, 613-624.   DOI
6 Lee, H. R., Ahn, J. E. and Han, N. S. 2013. Chemical mutation of Leuconostoc mesenteroides for improved mannitol production: development of a high-throughput screening strategy. Biothechnol. Bioprocess Eng. 28, 213-215.
7 Jeong, E. J., Moon, D. W., Oh, J. S., Moon, J. S., Seong, H. B., Kim, K. Y. and Han, N. S. 2017. Development of Cabbage juice medium for industrial production of Leuconostoc mesenteroides starter. J. Microbiol. Biotechnol. 27, 2112-2118.   DOI
8 Jeong, S. J., Yang, H. J., Jeong, S. Y. and Jeong, D. Y. 2015. Identification of characterization and statistical optimization of medium constituent for Bacillus subtilis SCJ4 isolated from Korean traditional fermented food. Kor. J. Microbiol. 51, 48-60.   DOI
9 Joshi, S., Yadav, S., Nerurkar, A. and Desai, A. J. 2007. Statistical optimization of medium components for the production of biosurfactant by Bacillus licheniformis K51. J. Microbiol. Biotechnol. 17, 313-319.
10 Otgonbayar, G. E., Eom, H. J., Kim, B. S. and Han, N. S. 2011. Mannitol production by Leuconostoc citreum KACC 91348P isolated from Kimchi. J. Microbiol. Biotechnol. 21, 968-971.   DOI
11 Park, E. H., Yoo, B. H. and Kim, M. D. 2018. Characterization of the petent mannitol producer Leuconostoc mesenteroides KCTC13305. J. Agri. Life. Sci. 30, 41-49.
12 Ryu, B. H., Kim, D. H. and Yun, J. W. 1996. Characteristics of mannitol production by Leuconostoc sp. KY-002. KSBB J. 11, 636-641.
13 Saitou, N. and Nei, M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
14 Yun, J. W. and Song, S. K. 1994. Mannitol production by Aureobasidium pullurans. KSBB J. 9, 140-146.
15 Seo, J. W., Yang, H. J., Jeong, S. J., Ryu, M. S., Ha, G. S., Jeong, S. Y. and Jeong, D. Y. 2018. Characterization of Lactobacillus brevis SCML 432 isolated from Meju in Sunchang and optimization of its culture conditions by statistical methods. Kor. J. Food Preserv. 25, 397-410.   DOI
16 Yang, H. J., Park, C. S., Yang, H. Y., Jeong, S. J., Jeong, S. Y., Jeong, D. Y., Kang, D, O., Moon, J. Y. and Choi, N. S. 2015. Optimization of medium for the production of cellulase by Bacillus subtilis NC1 using response surface methodology. J. Life Sci. 25, 680-685.   DOI
17 Yoo, S. K., Hur, S. S., Song, S. H., Kimg, K. M. and Whang, K. S. 2005. Optimization of mannitol fermentation by Leuconostoc mesenteroides sp. strain JFY. J. Life Sci. 15, 374-381.   DOI
18 Yue, M., Cao, H., Zhang, J., Meng, Y., Chen, W., Huang, L. and Du, Y. 2013. Improvement of mannitol production by Lactobacillus brevis mutant 3-A5 based on dual-stage pH control and fed-batch fermentations. World J. Microbiol. Biotechnol. 29, 1923-1930.   DOI
19 Yun, J. W., Kang, S. C., Ryu, B. H. and Song, S. K. 1996. Production of mannitol by Lactobacillus sp. KY-107. KSBB J. 11, 374-379.
20 Zhang, Z., Cheng, W. Y., Ju, X. Y. and Jin, H. X. 2015. The effect of dextransucrase gene inactivation on mannitol production by Leuconostoc mesenteroides. Indian J. Microbiol. 55, 35-40.   DOI