• Title/Summary/Keyword: Carbon black powder

Search Result 105, Processing Time 0.026 seconds

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

Synthesis of AlN Powder from $Al_2(SO_4)_3.18H_2O$: II. Deoxidation Effect ($Al_2(SO_4)_3.18H_2O$로부터 AlN 분말의 합성: II. 탈산화 효과)

  • 송태호;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.471-479
    • /
    • 1992
  • AlN powder was synthesized by carbothermal reduction and nitridation using Al2(SO4)3.18H2O as the starting material. The synthesized AlN powder was fine but contained oxygen. Therefore carbonaceous material (carbon black or phenol novolac) was added teogether with the sintering aids (CaO, CaF2, CaCl2, Y2O3 and YF3). It was found that pressureless sintering at 1700~180$0^{\circ}C$ after deoxidation at 150$0^{\circ}C$ suppressed the formation of second phase (27R) and reduced the contents of lattice oxygen within AlN ceramics.

  • PDF

Properties of Powders and Sintered Bodies of $\beta$-SiC Prepared from Jecheon Quartzite (제천규석으로부터 제조한 $\beta$-SiC분말 및 소결체의 특성)

  • 이홍림;신석호;배철훈;김무경
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.139-146
    • /
    • 1987
  • ${\beta}$-SiC powders were prepared by the simultaneous reduction and carbiding of Jecheon quartzite at 1400$^{\circ}C$ for 7 hours in hydrogen atmosphere, using graphite or carbon black as the reducing and carbiding reagent. The prepared SiC powder was acid-treated with the mixture of fluoric acid and hydrochloric acid at room temperature and also by heating on an alcohol lamp for one hour, respectively. The impurities were mostly eliminated and the purity of SiC became 98.5% after hot acid treatment. The specific surface area of SiC powder was also increased up to 115㎡/g by hot acid treatment. This pure and fine SiC powder was hot-pressed at 1900$^{\circ}C$ for 30min, using 5wt% Al2O3 as a sintering aid. The density, M.O.R., KIC and hardness of the hot-pressed SiC ceramics were 3.195g/㎤, 48.7Kgf/$\textrm{mm}^2$, 5.4MN/㎥/2 and 2,182Kgf/$\textrm{mm}^2$, respectively.

  • PDF

Mechanism on the Synthesis of Titanium Carbide by SHS (Self-Propagating High-Temperature Synthesis) Method (자체반응열 고온합성법에 의한 탄화티타늄 합성에 관한 메카니즘)

  • Ha, Ho;Hwang, Gyu-Min;Han, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1249-1258
    • /
    • 1994
  • Titanium carbide was synthesized by reacting the prepared titanium powder and carbon black using SHS method sustains the reaction spontaneously, utilizing heat generated by the exothermic reaction itself. In this process, the effect of the particle size of titanium powder on combustion temperature and combustion wave velocity was investigated. By controlling combustion temperature and combustion wave velocity via mixing Ti and C powder with TiC, the reaction kinetics of TiC formation by SHS method was considered. Without reference to the change of combustion temperature and combustion wave velocity, TiC was easily synthesized by combustion reaction. As the particle size of titanium powder was bigger, or, as the amount of added diluent(TiC) increased, combustion temperature and combustion wave velocity were found to be decreased. The formation of TiC by combustion reaction in the Ti-C system seems to occur via two different mechanisms. At the beginning of the reaction, when the combustion temperatures were higher than 2551 K, the reaction was considered to be controlled by the rate of dissolution of carbon into a titanium melt with an apparent activation energy of 148 kJ/mol. For combustion temperatures less than 2551 K, it was considered to be controlled by the atomic diffusion rate of carbon through a TiC layer with an apparent activation energy of 355 kJ/mol. The average particle size of the synthesized titanium carbide was smaller than that of the starting material(Ti).

  • PDF

Dispersion Property of CNT/CB Composite influenced EEA (EEA에 미치는 CNT/CB Composite 분산 특성)

  • Yang, Hoon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.185-186
    • /
    • 2008
  • Use of the carbon nanotube is superior to general powder state materials of dispersion property. Because its ratio of diameter and length(aspect ratio) is very large, it has been known as a type of ideal nano-reinforcement composite. It used solution mixing method for specimen fabrication. To research dispersion property, we used FE-SEM(Field Emission Scanning Electron Microscope) and AFM(Atomic Force Microscope). As a result, this tendency confirms new conductivity network in which the carbon nanotube between carbon black constitute molecules shows a bond by similar constructive property.

  • PDF

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

Electrochemical Performance of CB/SiOx/C Anode Materials by SiOx Contents for Lithium Ion Battery (SiOx 함량에 따른 CB/SiOx/C 음극재의 전기화학적 특성)

  • Kim, Kyung Soo;Kang, Seok Chang;Lee, Jong Dae;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.117-123
    • /
    • 2021
  • In this study, the composite was prepared by mixing SiOx, soft carbon, and carbon black and the electrochemical properties of lithium ion battery were investigated. The content of SiOx added to improve the capacity of the soft carbon anode material was varied to 0, 6, 8, 10, 20 wt%, and carbon black was added as a structural stabilizer for reducing the volume expansion of SiOx. The physical properties of prepared CB/SiOx/C composite were investigated through XRD, SEM, EDS and powder resistance analysis. In addition, the electrochemical properties of prepared composite were observed through the charge/discharge capacity, rate and impedance analysis of the lithium ion battery. The prepared CB/SiOx/C composite had an inner cavity capable of mitigating the volume expansion of SiOx by adding carbon black. The formed internal cavity showed a low initial efficiency when the SiOx content was less than 8 wt%, and low cycle stability when the content of SiOx was less than 20 wt%. The CB/SiOx/C composite containing 10 wt% of SiOx showed an initial discharge capacity of 537 mAh/g, a capacity retention rate of 88%, and a rate of 79 at 2C/0.1C. SiOx was added to improve the capacity of the soft carbon anode material, and carbon black was added as a structural stabilizer to buffer the volume change of SiOx. In order to use the CB/SiOx/C composite as a high-efficiency anode material, the mechanism of the optimal SiOx and the use of carbon black as a structural stabilizer was discussed.

Research on the Manufacturing Technology for a PDMS Structure-Based Transpiration Generator Using Biomimetic Capillary Phenomenon (생체모방 모세관 현상을 이용한 PDMS 구조체 기반 증산발전기 제조기술 연구)

  • Seung-Hwan Lee;Jeungjai Yun;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Yong-Ho Choa;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.268-275
    • /
    • 2023
  • The demand for energy is steadily rising because of rapid population growth and improvements in living standards. Consequently, extensive research is being conducted worldwide to enhance the energy supply. Transpiration power generation technology utilizes the vast availability of water, which encompasses more than 70% of the Earth's surface, offering the unique advantage of minimal temporal and spatial constraints over other forms of power generation. Various principles are involved in water-based energy harvesting. In this study, we focused on explaining the generation of energy through the streaming potential within the generator component. The generator was fabricated using sugar cubes, PDMS, carbon black, CTAB, and DI water. In addition, a straightforward and rapid manufacturing method for the generator was proposed. The PDMS generator developed in this study exhibits high performance with a voltage of 29.6 mV and a current of 8.29 µA and can generate power for over 40h. This study contributes to the future development of generators that can achieve high performance and long-term power generation.

Catalytic oxidation kinetics of iron-containing carbon particles generated from diesel-sprayed hydrogen-air diffusion flame (디젤-분무 수소-공기 확산화염에서 생성된 철-함유 탄소입자의 촉매 산화반응 특성)

  • Kim, Yongho;Kim, Yong-Tae;Kim, Soo Hyung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.51-67
    • /
    • 2008
  • In this study, we devoted to kinetic measurement of the catalytic oxidation of iron-containing flame soot particles and better understanding the role of catalytic particles on carbon oxidation in particular at low temperature, targeting on autothermal regeneration of diesel particulate filter by diesel exhaust gas. Carbon-based Fe-containing particles generated by spraying ferrocene-doped diesel fuel in an oxy-hydrogen flame are tested and compared with a commercial carbon black powder for thermogravimetric analysis (TGA), secondary ion mass spectrometry (SIMS), Fourier-transform infrared spectroscopy (FTIR), Induced coupled plasma-Atomic emission spectroscopy (ICP-AES), and High-resolution transmission electron microscopy (HR-TEM). As a result, we found that a small amount of the ferrocene addition led to significant reductions in a on-set temperature and an activation energy of the carbon oxidation as well. An oxygenated surface complex forming at the particle surface could be thought as active species that would be readily consumed in particular at low temperature.

  • PDF

A Study on Synthesis of High Purity $\beta$-SiC Fine Powders from Ethyl Silicate(III) Effect of Additives (Ethyl Silicate를 이용한 고순도 $\beta$-SiC 미분말 합성에 관한 연구(III) 첨가제의 영향)

  • 최용식;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.416-422
    • /
    • 1989
  • The particle size of synthesized SiC powders was decreased with increasing carbon content when the mixture of carbon and silica was carbonized at 1, 45$0^{\circ}C$ after hydrolysis of the mixture with the ranges of 3.1 to 3.5 in the mole ratio of Carbon/Alkoxide. The reacted fraction of $\beta$-SiC nearly had nothing to do with the mole ratio of Carbon/Alkoxide. When the reaction was made by adding 0.5wt% additives in the composition of 3.1 in the mole ratio of carbon/alkoxide, the additives decreased the yield of $\beta$-SiC and its sequence was Ba2O3>B>Fe>Al>Al2O3>Si. The effect of additives promoted the transformation of $\beta$-SiC to $\alpha$-SiC form and shwoed the increasing tendency of lattice constant. The two colors of $\beta$-SiC powder came out : one was the black grey with addition of Al, Al2O3 and B the other the light grey with addition of Fe, B2O3 and Si.

  • PDF