Browse > Article
http://dx.doi.org/10.14478/ace.2020.1086

Electrochemical Performance of CB/SiOx/C Anode Materials by SiOx Contents for Lithium Ion Battery  

Kim, Kyung Soo (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
Kang, Seok Chang (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
Im, Ji Sun (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Applied Chemistry for Engineering / v.32, no.1, 2021 , pp. 117-123 More about this Journal
Abstract
In this study, the composite was prepared by mixing SiOx, soft carbon, and carbon black and the electrochemical properties of lithium ion battery were investigated. The content of SiOx added to improve the capacity of the soft carbon anode material was varied to 0, 6, 8, 10, 20 wt%, and carbon black was added as a structural stabilizer for reducing the volume expansion of SiOx. The physical properties of prepared CB/SiOx/C composite were investigated through XRD, SEM, EDS and powder resistance analysis. In addition, the electrochemical properties of prepared composite were observed through the charge/discharge capacity, rate and impedance analysis of the lithium ion battery. The prepared CB/SiOx/C composite had an inner cavity capable of mitigating the volume expansion of SiOx by adding carbon black. The formed internal cavity showed a low initial efficiency when the SiOx content was less than 8 wt%, and low cycle stability when the content of SiOx was less than 20 wt%. The CB/SiOx/C composite containing 10 wt% of SiOx showed an initial discharge capacity of 537 mAh/g, a capacity retention rate of 88%, and a rate of 79 at 2C/0.1C. SiOx was added to improve the capacity of the soft carbon anode material, and carbon black was added as a structural stabilizer to buffer the volume change of SiOx. In order to use the CB/SiOx/C composite as a high-efficiency anode material, the mechanism of the optimal SiOx and the use of carbon black as a structural stabilizer was discussed.
Keywords
Lithium ion battery; Anode; Carbon black; SiOx; Pitch;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Jing, Z. Hailei, H. Jianchao, W. Chunmei, and W. Jie, Nano-sized SiOx/C composite anode for lithium ion batteries, J. Power Sources, 196, 4811-4815 (2011).   DOI
2 X. Quan, J. K. Sun, Y. X. Yin, and Y. G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes, Adv. Funct. Mater., 28, 1705235 (2018).   DOI
3 Y. N. Jo, Y. Kim, J. S. Kim, J. H. Song, K. J. Kim, C. Y. Kwag, D. J. Lee, C. W. Park, and Y. J. Kim, Si-graphite composites as anode materials for lithium secondary batteries, J. Power Sources, 195, 6031-6036 (2010).   DOI
4 Y. Liu, Y. X. Lu, Y. S. Xu, Q. S. Meng, J. C. Gao, Y. G. Sun, Y. S. Hu, B. B. Chang, C. T. Liu, and A. M. Cao, Pitch-derived soft carbon as stable anode material for potassium ion batteries, Adv. Mater., 32, 2000505 (2020).
5 Y. Qingfeng, Z. Fenggang, Z. Yanming, L. Zhiyong, and Y. Danlin, Evaluation and performance improvement of Si/SiOx/C based composite as anode material for lithium ion batteries, Electrochim. Acta, 115, 16-21 (2014).   DOI
6 G. Li, J. Y. Li, F. S. Yue, Q. Xu, T. T. Zuo, Y. X. Yin, and Y. G. Guo, Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries, Nano Energy, 60, 485-492 (2019).   DOI
7 J. Park, S. S. Park, and Y. S. Won, In situ XRD study of the structural changes of graphite anodes mixed with SiOx during lithium insertion and extraction in lithium ion batteries, Electrochim. Acta, 107, 467-472 (2013).   DOI
8 J. H. Lee, W. J. Kim, J. Y. Kim, S. H. Lim and S. M. Lee, Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries, J. Power Sources, 176, 353-358 (2008).   DOI
9 Q. Zhang, N. Lin, T. Xu, K. Shen, T. Li, Y. Han, J. Zhou, and Y. Qian, Scalable synthesis of carbon stabilized SiO/graphite sheets composite as anode for high-performance Li ion batteries, RSC Adv., 7, 39762-39766 (2017).   DOI
10 H. C. Tao, X. L. Yang, L. L. Zhang, and S. B. Ni, Double-walled core-shell structured Si@SiO2@C nanocomposite as anode for lithium-ion batteries, Ionics, 20, 1547-1552 (2014).   DOI
11 S. J. Chae, M. S. Ko, S. K. Park, N. H. Kim, J. Y. Ma, and J. P. Cho, Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries, Energy Environ. Sci., 9, 1251-1257 (2016).   DOI
12 C. Xiao, P. He, J. Ren, M. Yue, Y. Huang, and X. He, Walnut-structure Si-G/C materials with high coulombic efficiency for long-life lithium ion batteries, RSC Adv., 8, 27580-27586 (2018).   DOI
13 C. Wang, H. Zhao, J. Wang, J. Wang, and P. Lv, Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries, Ionics, 19, 221-226 (2013).   DOI
14 Y. Yang, Z. Wang, Y. Zhou, H. Guo, and X. Li, Synthesis of porous Si/graphite/carbon nanotubes@c composites as a practical high-capacity anode for lithium-ion batteries, Mater. Lett., 199, 84-87 (2017).   DOI
15 W. R. Liu, J. H. Wang, H. C. Wu, D. T. Shieh, M. H. Yang, and N. L. Wu, Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries, J. Electrochem. Soc., 152, 1719-1725 (2005).
16 J. S. Kim, W. Pfleging, R. Kohler, H. J. Seifert, T. Y. Kim, D. J. Byun, H. G. Jung, W. C. Choi, and J. K. Lee, Three-dimensional silicon/carbon coreshell electrode as an anode material for lithium-ion batteries, J. Power Sources, 279, 13-20 (2015).   DOI
17 D. BarTow, E. Peled, and L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries, J. Electrochem. Soc., 146, 824-832 (1999).   DOI
18 J. W. Hwang and J. D. Lee, Electrochemical characteristics of PFO pitch anode prepared by chemical activation for lithium ion battery, Korean Chem. Eng. Res., 55, 307-312 (2017).   DOI
19 V. A. Sethuraman, K. Kowolik, and V. Srinivasan, Increased cycling efficiency and rate capability of copper coated silicon anodes in lithium ion batteries, J. Power Sources, 196, 393-398 (2011).   DOI
20 H. L. Tsai, C. T. Hsieh, J. Li, and Y. A. Gandomi, Enabling high rate charge and discharge capability, low internal resistance, and excellent cycle ability for Li-ion batteries utilizing graphene additives, Electrochim. Acta, 273, 200-207 (2018).   DOI
21 M. Dubarry, C. Truchot, M. Cugnet, B. Y. Liaw, K. Gering, S. Sazhin, D. Jamison, and C. Michelbacher, Evaluation of commercial lithium ion cells based on composite positive electrode for plugin hybrid electric vehicle applications. Part I: Initial characterizations, J. Power Sources, 196, 10328-10335 (2011).   DOI
22 K. S. Kim, J. S. Im, J. D. Lee, J. H. Kim, and J. U. Hwang, Effects of pitch softening point based on soft carbon anode for initial efficiency and rate performance, Appl. Chem. Eng., 30, 331-336 (2019).   DOI
23 C. Tao, W. Ji, Z. Qinglin, and S. Xin, Recent advancement of SiOx based anodes for lithium-ion batteries, J. Power Sources, 363, 126-144 (2017).   DOI