• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.023 seconds

[ $NO_2$ ] Gas Sensing Characteristics of Carbon Nanotubes (탄소 나노튜브를 이용한 이산화질소 감지 센서의 특성)

  • Lee R. Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.227-233
    • /
    • 2005
  • Carbon nanotubes (CNT) which were grown, on the alumina substrate with a pair of comb-type Au electrodes, by plasma enhanced chemical vapor deposition have been investigated for $NO_2$ gas sensor. The electrical resistance of CNT film decreased with temperature, indicating a semiconductor type of CNT, and also the resistance of CNT sensor decreased with increasing $NO_2$ concentration. Upon exposure to $NO_2$ gas, the electrical resistance of CNT film sensor rapidly decreased within 3 minutes, and then showed a constant value after $20\~30$ minutes. It is found that the sensitivity of CNT sensor has been improved by air oxidation. The CNT sensor oxidized at $450^{\circ}C$ for 30 minutes showed higher sensitivity value than that without oxidation by $27\%$, even for a low 250 ppb $NO_2$ concentration at operating temperature of $200^{\circ}C$. But it needs a recovery time more than 20 minutes for reuse after detection of $NO_2$ gas.

  • PDF

Evaluation of TiO2 Photocatalytic Activity with Addition of Carbon Nanotube (탄소나노튜브(CNT)의 첨가에 따른 TiO2의 광촉매 특성 변화 연구)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.458-465
    • /
    • 2016
  • A $TiO_2$/CNT nanohybrid photocatalyst is synthesized via sol-gel route, with titanium (IV) isopropoxide and multi-walled carbon nanotubes (MWCNTs) as the starting materials. The microstructures and phase constitution of the nanohybrid $TiO_2$/CNT (0.005wt%) samples after calcination at $450^{\circ}C$, $550^{\circ}C$ and $650^{\circ}C$ in air are compared with those of pure $TiO_2$ using field-emission scanning electron microscopy and X-ray diffraction, respectively. In addition, the photocatalytic activity of the nanohybrid is compared with that of pure $TiO_2$ with regard to the degradation of methyl orange under visible light irradiation. The $TiO_2$/CNT composite exhibits a fast grain growth and phase transformation during calcination. The nanocomposite shows enhanced photocatalytic activity under visible light irradiation in comparison to pure $TiO_2$ owing to not only better adsorption capability of CNT but also effective electron transfer between $TiO_2$ and CNTs. However, the high calcination temperature of $650^{\circ}C$, regardless of addition of CNT, causes a decrease in photocatalytic activity because of grain growth and phase transformation to rutile. These results such as fast phase transformation to rutile and effective electron transfer are related to carbon doping into $TiO_2$.

Enhancement of the Mechanical Properties of CNT Fibers Synthesized by Direct Spinning Method with Various Post-Treatments (직접 방사법으로 합성된 탄소나노튜브 섬유의 기계적 특성 향상)

  • Kim, Jin-seok;Park, Junbeom;Kim, Seung Min;Kwac, L.K;Hwang, Jun Yeon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.239-243
    • /
    • 2015
  • Recent studies regarding the properties of carbon nanotubes (CNT) have made remarkable progress in CNT fibers research. However no CNT fibers showed the properties of CNTs because CNTs in fibers have weak interfacial bonding with low shear modulus in the pristine form. Thus, it is upmost interest to develop and employ post-production treatments to the CNT fibers that would potentially improve their properties. In this study, post-treatments resulted in improvement of strength of CNT fibers up to 40%.

Thermal characteristics of defective carbon nanotube-polymer nanocomposites

  • Unnikrishnan, V.U.;Reddy, J.N.;Banerjee, D.;Rostam-Abadi, F.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.397-409
    • /
    • 2008
  • The interfacial thermal resistance of pristine and defective carbon nanotubes (CNTs) embedded in low-density polyethylene matrix is studied in this paper. Interface thermal resistance in nanosystems is one of the most important factors that lead to the large variation in thermal conductivities in literature and the novelty of this paper lies in the estimation of the interfacial thermal resistance for defective nanotubes-systems. Thermal properties of CNT nanostructures are estimated using molecular dynamics (MD) simulations and the simulations were carried out for various temperatures by rescaling the velocities of carbon atoms in the nanotube. This paper also deals with the mesoscale thermal conductivities of composite systems, using effective medium theories by considering the size effect in the form of interfacial thermal resistance and also using the conventional micromechanical methods like Hashin-Shtrikman bounds and Wakashima-Tsukamoto estimates.

NO Gas Sensing Characteristics of Layered Composites of Carbon Nanotubes Coated with Al-Doped ZnO (탄소나노튜브를 알루미늄이 첨가된 산화아연으로 코팅한 층상 복합체의 일산화질소 가스 감지 특성)

  • Ahn, Eun-Seong;Jung, Hoon-Chul;Nguyen, Nguyen Le;Oh, Dong-Hoon;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.631-636
    • /
    • 2009
  • We investigated the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with a thin layer of 1 wt% Al-doped ZnO using rf magnetron sputtering deposition. Morphological studies clearly revealed that the ZnO appeared to form beadshaped crystalline nanoparticles with an average diameter as small as 30 nm, attaching to the surface of the nanotubes. It was found that the NO gas sensing properties of the ZnO-CNT layered composites were dramatically improved over Al-doped ZnO thin films. It is reasoned from these observations that an increase in the surface-to-volume ratio associated with the numerous ZnO “nanobeads” on the surface of the CNTs results in the enhancement of the NO gas sensing properties. The ZnO-CNT layered composite sensors exhibited a maximum sensitivity of 13.7 to 2 ppm NO gas at a temperature of 200${^{\circ}C}$ and a low NO gas detection limit of 0.2 ppm in dry air.

Carbon Nanotube Heater Generating High Heat Flux

  • Kang, Yong-Pil;Lee, Hyun-Chang;Kim, Duck-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.530-530
    • /
    • 2012
  • Many practical applications of carbon nanotubes(CNTs) have been proposed and there have been attempts to utilize CNT films as transparent electrodes for solar cells and displays. Our group has considered the use of the CNT film as a thin film heater (TFH) and proposed it for the first time and reported the thermal behavior of the TFH made of single walled CNTs. However, due to the relatively high electrical resistance of the CNT film, using the TFH in application areas requiring high heat flux has been a difficult problem. To overcome this obstacle, we adopted a 'branch electrodes' concept to increase the film conductance dramatically. If two branch electrodes are inserted into a TFH whose original electrical resistance is R, the total resistance will be reduced to R/9. Because of the increased aspect ratio, the resistance of each segmented TFH will be reduced to R/3. Furthermore, since they are connected in parallel, the total resistance reduces to R/9. This could be extended to n branch electrodes, and the total resistance of the film will be reduced to R/(n+1)2, if the resistance of electrodes are negligibly small. We fabricated the heaters with different number of branch electrodes. The number of branch electrodes of the fabricated heaters are 0, 2, 4, 8 and their electrical resistance are 101.4, 39.5, 20.0, $15.4{\Omega}$, respectively. We applied 20V to each heater and monitored the temperature variations. We could achieve high heating temperature even with low voltage supply. This technique could be applied to relevant industrial applications which need high power film heater.

  • PDF

Preparation and characterization of water-soluble polyaniline/carbon nanotube composites (수용성 폴리아닐린/탄소나노튜브 복합재료의 제조 및 물성분석)

  • Lee, Jea-Uk;Jo, Won-Ho;Lee, Won-Oh;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • A new water-soluble and self-doped poly(styrenesulfonic acid-graft-aniline), PSSA-g-PANI, for dispersing carbon nanotubes (CNTs) in water was synthesized and its ability to stabilize aqueous CNT dispersions was examined. It was observed that the PANI in PSSA-g-PANI, which has benzoid and quinoid structure, was strongly adsorbed onto the nanotube surface via a strong ${\pi}-{\pi}$ interaction, and thus only gentle sonication causes exfoliation of CNT ropes to small bundles and the long-term stability of their resulting dispersions was much better than commercial surfactants. Furthermore, when thin films of PSSA-g-PANI/CNT are prepared from aqueous dispersion and their electrical conductivities are measured by the four probe technique, it is observed that their conductivities are in the range of 1.5-2.5 S/cm.

Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles (탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성)

  • Kim, Hyung-Kun;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

Carbon Nanotube Synthesis using Magnetic Null Discharge Plasma Production Technology

  • Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.532-536
    • /
    • 2007
  • Carbon nanotube (CNT) properties, produced using a magnetic null discharge (MND) plasma production technology, were investigated. We firstly deposited the Fe layer 200 nm in thickness on Si substrate by the magnetic null discharge sputter method at the substrate temperature of $300도C$, and then prepared CNTs on the catalyst layer by using the magnetic null discharge (MND) based CVD method. CNTs were deposited in a gas mixture of CH4 and N2 at a total pressure of 1 Torr by the MND-CVD method. The substrate temperature and the RF power were $650^{\circ}C$ and 600W, respectively. The characterization data indicated that the proposed source could synthesize CNTs even under relatively severe conditions for the magnetic null discharge formation.

Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers

  • Lei, Zuxiang;Zhang, Yang
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, the effect of matrix cracks on the buckling of a hybrid laminated plate is investigated. The plate is composed of carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional fiber reinforced composite (FRC) layers. Different distributions of single walled carbon nanotubes (SWCNTs) through the thickness of layers are considered. The cracks are modeled as aligned slit cracks across the ply thickness and transverse to the laminate plane, and the distribution of cracks is assumed statistically homogeneous corresponding to an average crack density. The first-order shear deformation theory (FSDT) is employed to incorporate the effects of rotary inertia and transverse shear deformation, and the meshless kp-Ritz method is used to obtain the buckling solutions. Detailed parametric studies are conducted to investigate the effects of matrix crack density, CNTs distributions, CNT volume fraction, plate aspect ratio and plate length-to-thickness ratio, boundary conditions and number of layers on buckling behaviors of hybrid laminated plates containing CNTR-FG layers.