Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.6.458

Evaluation of TiO2 Photocatalytic Activity with Addition of Carbon Nanotube  

Yeo, In-Chul (Department of Mechanical Engineering, Incheon National University)
Kang, In-Cheol (Sports & Materials Technology Center, Incheon Economy Industry Information Technopark)
Publication Information
Journal of Powder Materials / v.23, no.6, 2016 , pp. 458-465 More about this Journal
Abstract
A $TiO_2$/CNT nanohybrid photocatalyst is synthesized via sol-gel route, with titanium (IV) isopropoxide and multi-walled carbon nanotubes (MWCNTs) as the starting materials. The microstructures and phase constitution of the nanohybrid $TiO_2$/CNT (0.005wt%) samples after calcination at $450^{\circ}C$, $550^{\circ}C$ and $650^{\circ}C$ in air are compared with those of pure $TiO_2$ using field-emission scanning electron microscopy and X-ray diffraction, respectively. In addition, the photocatalytic activity of the nanohybrid is compared with that of pure $TiO_2$ with regard to the degradation of methyl orange under visible light irradiation. The $TiO_2$/CNT composite exhibits a fast grain growth and phase transformation during calcination. The nanocomposite shows enhanced photocatalytic activity under visible light irradiation in comparison to pure $TiO_2$ owing to not only better adsorption capability of CNT but also effective electron transfer between $TiO_2$ and CNTs. However, the high calcination temperature of $650^{\circ}C$, regardless of addition of CNT, causes a decrease in photocatalytic activity because of grain growth and phase transformation to rutile. These results such as fast phase transformation to rutile and effective electron transfer are related to carbon doping into $TiO_2$.
Keywords
$TiO_2$; CNT; Photocatalytic activity; Electron transfer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. C. Kang, Q. Zhang, J. Kano, S. Yin, T. Sato and F. Saito: J. Photochem. Photobiol. A Chem., 189 (2007) 232.   DOI
2 I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Appl. Catal B, 80 (2008) 81.   DOI
3 I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Environ. Sci. Technol., 42 (2008) 3622.   DOI
4 T. Ohno, K. Tokieda, S. Higashida and M. Matsumura: Appl. Catal. A Gen., 244 (2003) 383.   DOI
5 S. H. Lee, S. Pumprueg, B. Moudgil and W. Sigmund: Colloid Surf. B Biointerfaces, 40 (2005) 93.   DOI
6 M. Chen, F. Zhang and W. Oh: New Carbon Mater., 24 (2009) 159.   DOI
7 S. J. Kim, J. S. Im, P. H. Kang, T. Kim and Y. S. Lee: Carbon Lett., 9 (2008) 294.   DOI
8 K. Woan, G. Pyrgiotakis and W. Sigmund: Adv. Mater., 21 (2009) 2233.   DOI
9 W. C. Oh and M. L. Chen: Bull. Korean Chem. Soc., 29 (2008) 159.   DOI
10 M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann: Chem. Rev., 95 (1995) 69.   DOI
11 W. Wang, P. Serp, P. Kalck and J. L. Faria: J. Mol. Catal. A Chem., 235 (2005) 194.   DOI
12 G. Pyrgiotakis, S. H. Lee and W. Sigmund: Advanced Photocatalysis with Anatase Nano-Coated Multi-Walled Carbon Nanotubes, MRS Spring Meeting, San Francisco, CA (2005).
13 D. Li, and H. Haneda: J. Photochem. Photobiol., A Chem. 160 (2003) 203.   DOI
14 N. Takeda, N. Iwata, T. Torimoto and H. Yoneyama: J. Catal., 177 (1998) 240.   DOI
15 B. Tryba, A. W. Morawski and M. Inagaki: Appl. Catal. B Environ., 41 (2003) 427.   DOI
16 P. Scherrer: Mathematisch-Physikalische Klasse, 2 (1918) 98.
17 S. H. Huang, C. C. Wang, S. Y. Liao, J. Y. Gan and T. P. Perng: Thin Solid Films, 616 (2016) 151.   DOI
18 J. K. Han, S. M. Choi and G. H. Lee: Mater. Lett., 61 (2007) 3798.   DOI
19 K. Palanivelu, J. S. Im and Y. S. Lee: Carbon Sci., 8 (2007) 214.
20 B. T. Lee, J. K. Han, A. K. Gain. K. H. Lee and F. Saito: Mater. Lett., 60 (2006) 2101.   DOI
21 K. C. Nguyen, M. P. Ngoc and M. V. Nguyen: Mater. Lett., 165 (2016) 247.   DOI
22 Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao and C. Xie: ACS Catal., 3 (2013) 1477.   DOI
23 T. Ohno, T. Tsubota, K. Nishijima and Z. Miyamoto: Chem. Lett., 33 (2004) 750.   DOI