• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.029 seconds

Thermal Properties of Semiconducting Materials for Power Cable by Carbon Nanotube Content (CNT 함량에 따른 전력케이블용 반도전층 재료의 열적 특성)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Shin, Dong-Hoon;Park, Bae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.570-575
    • /
    • 2006
  • In this paper, we have investigated thermal properties by changing the content of carbon nanotube, which is component part of semiconductive shield in underground power transmission cable. Heat capacity (${\Delta}H$), glass transition temperature (Tg) and melting temperature (Tm) were measured with the samples of eight, through DSC (Differential Scanning Calorimetry), and the measurement ranges of temperature selected from $-100[^{\circ}C]\;to\;100[^{\circ}C]$ with heating temperature selected per $4[^{\circ}C/min]$ Also, high temperature, heat degradation initiation temperature, and heat weight loss were measured by TGA (Thermogravimetric Analysis) in the temperature from $0[^{\circ}C]\;to\;700[^{\circ}C]$ with rising temperature of $10[^{\circ}C/min]$. As a result, the Glass transition temperatures of the sample were showed near $-20[^{\circ}C]{\sim}25[^{\circ}C]$, and the heat capacity and melting temperature from the DSC was increased according to increasing the content of carbon nanotube, while, thermal diffusivity was increased according to increasing the content of carbon nanotube. Also, heat degradation initiation temperature from the TGA results was increasing according to increasing the content of carbon nanotube with CNT/EEA. Therefore, heat stabilities of EVA, which contained the we VA (vinyl acetate), showed the lowest.

Measurement of Carbon Nanotube Agglomerates Size and Shape in Dilute Phase of a Fluidized Bed (유동층 반응기 희박상 내 탄소나노튜브 응집체의 크기 및 형상 측정)

  • Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.646-651
    • /
    • 2017
  • Size and shape of carbon nanotube (CNT) agglomerates in the dilute phase of a bubbling fluidized bed ($0.15m\;i.d{\times}2.6m\;high$) have been determined by the laser sheet technique. Axial solid holdup distribution of the CNT particles showed S curve with dense phase and dilute phase in bubbling fluidization regime. Heywood diameter and Feret diameter of the CNT agglomerates in the dilute phase of bubbling fluidized bed increased with increasing gas velocity. The CNT particle number in the agglomerates increased with increasing of gas velocity. Aspect ratio increased and circularity, roundness and solidity decreased with increasing of gas velocity. A possible mechanism of agglomerates formation was proposed based on the obtained information.

Effect of Ball Milling on Photosensitive Carbon Nanotube Pastes and Their Field Emission Properties (감광성 CNT paste에 대한 저에너지 Ball Milling 처리 효과)

  • Jang, Eun-Soo;Lee, Han-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.154-154
    • /
    • 2008
  • Although the screen printing technology using photosensitive carbon nanotube (CNT) paste has many advantages such as low cost, simple process, uniform emission, and capability of mass production, the CNT paste needs to be improved further in CNT dispersion, printability, adhesion, electrical conductivity, population of CNT emitters, etc. Ball milling has been frequently employed to prepare the CNT paste as ball milling can mix its ingredients very well and easily cut the long, entangled CNTs. This study carried out a parametric approach to fabricating the CNT paste in terms of low-energy ball milling and a paste composition. Field emission properties of the CNT paste was characterized with CNT dispersion and electrical conductivity which were measured by a UV-Vis spectrophotometer and a 4-point probe method, respectively. Main variables in formulating the CNT paste include a length of milling time, and amounts of CNTs and conductive inorganic fillers. In particular, we varied not only the contents of conductive fillers but also used two different sizes of filler particles of ${\mu}m$ and nm ranges. Among many variations of conductive fillers, the best field emission characteristics occurred at the 5 wt% fillers with the mixing ratio of 3:1 for ${\mu}m$-and nm-sizes. The amount and size of fillers has a great effect on the morphology, processing stability, and field emission characteristics of CNT emitter dots. The addition a small amount of nm-size fillers considerably improved the field emission characteristics of the photosensitive CNT paste.

  • PDF

An Atomistic Modeling for Electromechanical Nanotube Memory Study (원자단위 Electromechanical 모델링을 통한 나노튜브 메모리 연구)

  • Lee, Kang-Whan;Kwon, Oh-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.116-125
    • /
    • 2006
  • We have presented a nanoelectromechanical (NEM) model based on atomistic simulations. Our models were applied to a NEM device as called a nanotube random access memory (NRAM) operated by an atomistic capacitive model including a tunneling current model. We have performed both static and dynamic analyses of a NRAM device. The turn-on voltage obtained from molecular dynamics simulations was less than the half of the turn-on voltage obtained from the static simulation. Since the suspended carbon nanotube (CNT) oscillated with the amplitude for the oscillation center under an externally applied force, the quantity of the CNT-gold interaction in the static analysis was different from that in the dynamic analysis. When the gate bias was applied, the oscillation centers obtained from the static analysis were different from those obtained from the dynamics analysis. Therefore, for the range of the potential difference that the CNT-gold interaction effects in the static analysis were negligible, the vibrations of the CNT in the dynamics analysis significantly affected the CNT-gold interaction energy and the turn-on voltage. The turn-on voltage and the tunneling resistance obtained from our tunneling current model were in good agreement with previous experimental and theoretical works.

An Experiment about Assembling Condition of Carbon Nanotube Tip for AFM (주사탐침현미경용 카본나노튜브 팁의 조립 조건 실험)

  • 박준기;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.501-504
    • /
    • 2004
  • This paper describes the fabrication method for atomic force microscopy(AFM) tip with multi-walled carbon nanotube(MWNT). For making a carbon nanotube (CNT) modified tips, AC electric field which cause the dielectrophoresis was used for alignment and deposition of CNTs in this research. By dropping the MWNT solution and applying an electric field between an AFM tip and an electrode, MWNTs which were dispersed into a diluted solution were directly assembled onto the apex of the AFM tips due to the attraction by the dielectrophoretic force. In this case, we investigate the effect of the angle between a tip axis and an electrode. Experimental setup were presented, and then CNT attached AFM tips are successfully shown in this paper.

  • PDF

NO2 gas sensing characteristics of patterned carbon nanotube mats (패턴이 형성된 탄소나노튜브 매트의 이산화질소 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Paek, Kyeong-Kap;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.199-204
    • /
    • 2006
  • Carbon nanotube (CNT) mats grown by thermal chemical vapor deposition on a micromachined substrate with a chrome heater and a diaphragm were investigated as sensing materials of resistive gas sensors for nitrogen dioxide ($NO_{2}$) gas. The aligned CNT mats fabricated into mesh and serpentine shapes by the patterned cobalt catalyst layer. CNT mats showed a p-type electrical resistivity with decreasing electrical resistance upon exposure to $NO_{2}$. All sensors exhibited a reversible response at a thermal treatment temperature of $130^{\circ}C$ for about 5 minutes. The resistance change to $NO_{2}$ of the mesh-shaped CNT mats was larger than that of the serpentine-shaped CNT mats.

Electrical Characteristics of Carbon Nanotube Embedded 4H-SiC MOS Capacitors (탄소나노튜브를 첨가한 4H-SiC MOS 캐패시터의 전기적 특성)

  • Lee, Taeseop;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.547-550
    • /
    • 2014
  • In this study, the electrical characteristics of the nickel (Ni)/carbon nanotube (CNT)/$SiO_2$ structures were investigated in order to analyze the mechanism of CNT in MOS device structures. We fabricated 4H-SiC MOS capacitors with or without CNTs. CNT was dispersed by isopropyl alcohol. The capacitance-voltage (C-V) and current-voltage (I-V) are characterized. Both devices were measured by Keithley 4200 SCS. The experimental flatband voltage ($V_{FB}$) shift was positive. Near-interface trap charge density ($N_{it}$) and negative oxide trap charge density ($N_{ox}$) value of CNT embedded MOS capacitors was less than that values of reference samples. Also, the leakage current of CNT embedded MOS capacitors is higher than reference samples. It has been found that its oxide quality is related to charge carriers and/or defect states in the interface of MOS capacitors.

Direct Electrical Probing of Rolling Circle Amplification on Surface by Aligned-Carbon Nanotube Field Effect Transistor

  • Lee, Nam Hee;Ko, Minsu;Choi, Insung S.;Yun, Wan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1035-1038
    • /
    • 2013
  • Rolling circle amplification (RCA) of DNA on an aligned-carbon nanotube (a-CNT) surface was electrically interfaced by the a-CNT based filed effect transistor (FET). Since the electric conductance of the a-CNT will be dependent upon its local electric environment, the electric conductance of the FET is expected to give a very distinctive signature of the surface reaction along with this isothermal DNA amplification of the RCA. The a-CNT was initially grown on the quartz wafer with the patterned catalyst by chemical vapor deposition and transferred onto a flexible substrate after the formation of electrodes. After immobilization of a primer DNA, the rolling circle amplification was induced on chip with the a-CNT based FET device. The electric conductance showed a quite rapid increase at the early stage of the surface reaction and then the rate of increase was attenuated to reach a saturated stage of conductance change. It took about an hour to get the conductance saturation from the start of the conductance change. Atomic force microscopy was used as a complementary tool to support the successful amplification of DNA on the device surface. We hope that our results contribute to the efforts in the realization of a reliable nanodevice-based measurement of biologically or clinically important molecules.

Linearized of Electrostatic Force in the Carbon Nanotube for Dynamic Behavior Analysis (CNT의 동적 거동 해석을 위한 정전기력의 선형화)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.30 no.2
    • /
    • pp.115-122
    • /
    • 2005
  • For an analysis of dynamic behavior in carbon nanotube(CNT) which is widely used as micro and nano-sensors, an electrostatic force of CNT was investigated. For larger gaps in between sensor and electrode the van der Waals force can be ignored. The boundary condition in the CNT was assumed to clamped-clamped case at both ends. In this paper electrostatic force is expressed as linear equation along deflection using Taylor series. The first and second terms(${\zeta}_0$ and ${\zeta}_1$) of the linear equation are analyzed. Based on the simulation results nondimensional number ${\Phi}_0$ and ${\Phi}_1$ which came from ${\zeta}_0$ and ${\zeta}_1$ were decreased according to the increment of the gap. Reduction ratio of the second term ${\zeta}_1$ is increased up to 99% along to the increment of the gap. The higher order terms can be ignored and therefore, electrostatic force can be expressed using the first two terms of the linear equation. This results play an important role in analyzing the nonlinear dynamic behavior of the CNT as well as the pull-in voltage of simply supported switches.

Development of Physical Cell Lysis Using a Spiked CNT Membrane for Polyhydroxybutyrate Recovery (폴리하드록시부틸레이트 회수를 위한 물리적 세포 파쇄용 돌기형 탄소나노튜브 분리막 제작)

  • Jiwon Mun;Youngbin Baek
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.390-397
    • /
    • 2023
  • Conventional extraction methods for polyhydroxybutyrate (PHB), a sustainable alternative to petroleum-based plastics, cause a decrease in molecular weight and a change in properties. In this work, we developed a method to extract PHB accumulated in microorganisms by physical disruption through filtration using a spiked carbon nanotube (CNT) membrane with functionalized CNT. In addition, filtration of the PHB-containing microbial solution was performed to confirm PHB extraction, which was found to be 4% more efficient than chloroform, the most used extraction method. These results indicate that the spiked CNT membrane has potential in the bioplastics recovery process.